ELECTRONS AND CHEMICAL BONDING

Harry B. Gray Columbia University

W. A. BENJAMIN, INC. NEW YORK • AMSTERDAM

1965

Г. Грей

ЭЛЕКТРОНЫ И ХИМИЧЕСКАЯ СВЯЗЬ

Перевод с английского канд. хим. наук М. Н ВАРГАФТИКА

Под редакцией доктора хим. наук М. Е. ДЯТКИНОЙ

Издательство «МИР» Москва 1967 Книга посвящена строению молекул (в основном неорганических соединений), рассматриваемому в рамках нанболее прогрессивного в настоящее время метода молекулярных орбиталей.

Изложение матернала очень наглядно, чему способствует большое количество иллюстраций Помещены справочные таблицы энергии, валентных углов и длины химических связей многих простых молекул, а также таблицы потенциалов ионизации и сродства к электрону у атомов

Книга рассчитана на студентов младших курсов химических вузов и химиков, интересующихся только качественным аспектом квантовой химии.

Инд. 2-5-4

В насгоящее время становится очевидным, что основным путем рассмотрения строения неорганических соединений является метод молекулярных орбиталей, причем это относится как к сложным теоретическим расчетам свойств молекул, так и к их качественному оппсанию. Однако ознакомлению химиков-неоргаников с этим методом рассмотрения строения молекул до сих пор препятствовало отсутствие книг, в которых такой подход был бы проведен последовательно. Упоминания о методе молекулярных орбиталей можно найти теперь почти в каждой книге, посвященной строению и физическим методам исследования молекул. Но обычно излагаются представления и о нонной связи, и о методе валентных связей, и лишь затем оставшееся небольшое число страниц (или строк) предоставляют для рассмотрения метода молекулярных орбиталей. Такой исторический подход плох тем, что при этом создается неправильное представление об относительной роли этих теорий.

Книга Грея полностью посвящена методу молекулярных орбиталей в его качественном аспекте. Во-первых, она отличается новизной изложения от обычных книг; во-вторых, благодаря тому, что автор ограничился только качественным рассмотрением, изложение вполне доступно даже для неподготовленного читателя. Это дает основания рекомендовать книгу Грея самым широким кругам химиков (особенно химиков-неорганическую химию. На наш взгляд, эта книга — незаменимое пособие в начатой перестройке преподавания химии в высшей и даже средней школе, которое должно базироваться на учении о строении молекул. Публикуемая книга дает возможность просто и доступно, без излишних математических сложностей объяснить, как строятся молекулярные орбитали двухатомных, а затем и многоатомных молекул.

Основы, необходимые для ознакомления с методом молекулярных орбиталей, заложены в главе I, посвященной электронному строению атомов. Хотя этот материал известен обычно довольно хорошо, следует указать, что и здесь автор не ограничился обычным для книг, рассчитанных не на химиков-теоретиков, а на широкие массы химиков-экспериментаторов и преподавателей, изложением. Он ввел ряд представлений, таких, как представление о термах атомов в схеме Расселла ---Саундерса. Это облегчает понимание состояний молекул. Очень детально рассмотрены затем двухатомные молекулы. Обсуждение их молекулярных орбиталей можно найти в некоторых вышедших ранее книгах, но в книге Грея дана более правильная современная последовательность орбиталей с учетом конфигурационного взаимодействия, позволяющая объяснить парамагнетизм не только молекулы О2, но и В2. В остальных главах рассматриваются еще более сложные молекулы — трех- и четырехатомные, тетраэдрические и октаэдрические. Следует, правда, указать, что это рассмотрение проводится без использования теории трупп, только на базе интунтивных представлений о симметрии, так что некоторые результаты читателю приходится принимать на веру. Тем, кто хочет ознакомиться с этим вопросом в более строгой форме, можно рекомендовать не ограничиваться книгой Грея, а после ее чтения перейти к более систематическим рассмотрениям теории симметрии молекул и ее использованию для построения молекулярных орбиталей, например к книге Джаффе и Орчина «Симметрия в химии».

Книгу Грея вполне можно читать без карандаша в руках, так как главное в ней— это идеи, а не конкретный вид молекулярных орбиталей для той или иной молекулы: усвоению материала существенно поможет решение хорошо подобранных задач, приведенных в конце каждой главы.

М. Дяткина

Эта книга написана на основе моих лекций по теории химической связи, прочитанных в Колумбийском колледже весной 1962 г., и предназначена главным образом для студентов-химиков, желающих получить представление о современных теориях химической связи. Предлагаемый материал рассчитан на один семестр. Книга может быть также использована в качестве дополнительной литературы при изучении обычного курса химии.

Изложению основного предмета — теории химической связи — предшествует краткий обзор теории строения атома (для более детального ознакомления с этим вопросом студентам можно рекомендовать книгу Р. М. Хохштрассера; R. M. Hochstrasser, Behaviour of electrons in atoms, Benjamin, New York, 1964 г.).

В остальной части книги каждая глава посвящена обсуждению химической связи в определенном классе молекул. В главах II-VII рассматриваются структуры наиболее типичных молекул, образуемых элементами от водорода до конца второго периода периодической системы. Таким образом, в этой части книги описаны строение и характер связей в двухатомных, линейных и угловых трехатомных, плоских треугольных и тетраэдрических молекулах, а также в молекулах, построенных в виде тригональной пирамиды. Главы VIII и IX представляют собой введение в современные представления о характере связей в молекулах органических веществ и в комплексах переходных металлов. Книга снабжена большим количеством иллюстраций, на которых особым приемом изображены граничные поверхности орбиталей. Мелкие точки, которыми пользовался

художник, применены только для создания трехмерного пространственного эффекта. Плотность электронного облака, которая меняется в зависимости от расстояния от ядра, на наших рисунках не отражена.

Рассмотрение строения атома начинается с теории Бора, а не с уравнения Шредингера. Мне кажется, что большинство студентов оценят возможность изучить развитие атомной теории в XX в., и переход от термина «орбиты» к термину «орбитали» не вызовет серьезных затруднений. Некоторые важные физические величины студент может вычислять, пользуясь простой теорией Бора. В конце первой главы рассмотрены термы многоэлектронных атомов в LSM_LM_S -приближении Расселла — Саундерса.

В настоящей книге химическая связь рассматривается главным образом с точки зрения теории молекулярных орбиталей. Там, где это представляется необходимым, метод МО сравнивается с методом валентных связей и с теорией кристаллического поля. Книга рассчитана на студентов, не имеющих представления о теории групп. Хотя при изложении теории МО используются принципы симметрии, формальные теоретико-групповые методы при этом не привлекаются, и только в главе IX применены символы теории групп. Профессором Карлом Бальхаузеном и автором опубликован конспект вводного курса по теории МО, написанный на несколько более высоком уровне, чем настоящая книга. В этом конспекте уделено большое внимание применению теории групп к вопросам электронного строения молекул.

В настоящую книгу включены упражнения; большинство из них снабжено решениями. Кроме того, в конце каждой главы приводится несколько дополнительных упражнений и вопросов.

Г. Грей

Нью-Йорк Март 1964 г. (

ЭЛЕКТРОНЫ В АТОМАХ

1-1. Предварительные замечания

Прежде чем приступить к нашей основной задаче обсуждению характера химической связи в молекулах наиболее важных классов соединений, остановимся кратко на некоторых необходимых для дальнейшего рассмотрения вопросах строения атома. Мы начнем с теории Нильса Бора для атома водорода, поскольку его идеи послужили основой современных теорий строения атома.

1-2. Строение атома водорода по Бору (1913 г.)

По теории Бора, электрон в атоме водорода движется вокруг протона по замкнутой круговой орбите (рнс. 1). На этом рисунке m_e — масса электрона, m_n масса ядра, r — радиус круговой орбиты, а v — линейная скорость движения электрона.

Для того чтобы орбита была устойчивой, должно выполняться следующее условие: центробежная сила, обусловленная вращением электрона, должна быть равна силе притяжения между электроном и ядром:

Центробежная сила
$$= \frac{m_e v^2}{r}$$
. (1)

Электрон удерживается на орбите благодаря действию двух различных сил притяжения к ядру — электростатической и гравитационной. Поскольку гравитационное притяжение пренебрежимо мало по сравнению с электростатическим, притяжение можно рассматривать как результат чисто электростатического взаимодействия:

Сила электростатического притяжения $=\frac{\rho^2}{r^2}$. (2)

Приравнивая выражения (1) и (2), получаем условие устойчивости орбиты:

$$\frac{m_e v^2}{r} = \frac{e^2}{r^2}.$$
(3)

Теперь можно вычислить энергию электрона, движущегося по одной из боровских орбит. Полная энергия равна сумме кинетической *T* и потенциальной *V* энергий:

$$E = T + V, \tag{4}$$

где кинетическая энергия движущегося электрона

$$T = \frac{1}{2} m_e v^2, \tag{5}$$

а энергия электростатического притяжения

$$V = \int_{\infty}^{r} \frac{e^2}{r^2} dr = -\frac{e^2}{r}.$$
 (6)

Следовательно, полная энергия определяется уравнением

$$E = \frac{1}{2} m_e v^2 - \frac{e^2}{r}.$$
 (7)

Но условне устойчивости орбиты требует, чтобы

$$\frac{m_e v^2}{r} = \frac{e^2}{r^2}$$
 ИЛИ $m_e v^2 = \frac{e^2}{r}$. (8)

Подставляя это значение $m_e v^2$ в уравнение (7), получаем

$$E = \frac{1}{2} \frac{e^2}{r} - \frac{e^2}{r} = -\frac{1}{2} \frac{e^2}{r}.$$
 (9)

Теперь, определив радиус орбиты r, можно будет вычислить энергию. В соответствии с уравнением (9) энергия может принимать любые значения от нуля (при $r = \infty$) до бесконечности (при r=0).

Бор высказал предположение о том, что момент количества движения системы (mevr) может принимать только некоторые дискретные значения, которые называют квантованными. Вследствие этого электрон может находиться только на некоторых определенных орбитах. По теории Бора, момент количества движения должен быть величиной, кратной *единичному кванту* $h/2\pi$ (h постоянная величина, названная по имени Макса Планка, определение которой будет дано на стр. 13). Матема-

Рис. 1. Строение атома водорода по Бору.

тически *гипотезу Бора* можно представить следующим образом:

$$m_e v r = n \left(\frac{h}{2\pi}\right),\tag{10}$$

где $n=1, 2, 3 \ldots$ (все целые числа до бесконечности). Решая уравнение (10) относительно v, получаем

$$v = n \left(\frac{h}{2\pi}\right) \frac{1}{m_e r}.$$
 (11)

Подставляя полученное значение v в условие для устойчивости орбиты (8), находим

$$\frac{m_e n^2 h^2}{4\pi^2 m_e^2 r^2} = \frac{e^2}{r}$$
(12)

или

$$r = \frac{n^2 h^2}{4\pi^2 m_e e^2} \,. \tag{13}$$

Уравнение (13) позволяет определить радиусы разрешенных электронных орбит в атоме водорода, выраженные через *квантовые числа п.* Такая орбита может быть охарактеризована величиной энергии, которую можно вычислить, подставив в выражение для энергии (9) значение r из уравнения (13):

$$E = -\frac{2\pi^2 m_e e^4}{n^2 h^2}$$
(14)

Упражнения

1-1. Вычислите раднус первой боровской орбиты.

Решение. Радиус первой боровской орбиты можно определить испосредственно из уравнения (13).

$$r = \frac{n^2 h^2}{4\pi^2 m_e e^2}.$$

Подставляя n=1 и значения постоянных, получаем

Боровский радиус для n = 1 обозначают a_0 .

1-2. Вычислите скорость движения электрона на первой боровской орбите в атоме водорода

Решение. По уравнению (11),

$$v = n \left(\frac{h}{2\pi}\right) \frac{1}{m_e r}.$$

Подставляя n=1 и $r=a_0=0.529 \cdot 10^{-8}$ см, получаем

$$v = (1) \frac{(6,6256 \cdot 10^{-27} \text{ spr} \cdot ce\kappa)}{2(3,1416)} \cdot \frac{1}{(9,1091 \cdot 10^{-28} \text{ c})(0,529 \cdot 10^{-8} \text{ cm})} = 2,185 \cdot 10^8 \text{ cm} \cdot ce\kappa^{-1}.$$

1-3. Спектр атома водорода

Наиболее устойчивое состояние атома, обладающее наименьшей эпергией, называется основным состоянием. Из уравнения (14) видно, что наиболее устойчивому

электронному состоянию атома водорода соответствует квантовое число n=1. Состояния с n>1 менее устойчнвы, чем основное, и поэтому называются возбужденными состояниями. Если электрону сообщить нужное количество энергии, то он перейдет с уровня, для которого n=1, на уровень с другим значением n. Если это световая энергия, то атом будет поглощать излучение с частотой, точно эквивалентной энергии, необходимой для *перехода из одного квантового состояния в другое*. С другой стороны, возвращение электрона с высшего энергетического уровня в основное состояние (n=1) будет сопровождаться излучением света.

Свет с определенными характеристическими частотами, испускаемый или поглощаемый при изменении орбит электрона, можно зарегистрировать на фотопластинке в виде ряда линий. Совокупность липий, наблюдаемых при поглощении света, представляет собой спектр поглощения; линии, обнаруженные при излучении, составляют эмиссионный спектр.

Планк и Эйнштейн получили уравнение, которое устанавливает связь между частотой v поглощаемого или испускаемого света и энергией:

$$E = h v, \tag{15}$$

где *h* — постоянная Планка, равная 6,6256 · 10⁻²⁷ эрг · сек.

Еще задолго до создания теории Бора было известно, что частоты линий в эмиссионном спектре атомарного водорода подчиняются простому соотношению

$$v_{\rm H} = R_{\rm H} \left(\frac{1}{n^2} - \frac{1}{m^2} \right),$$
 (16)

где *п* и *т* — целые числа, а $R_{\rm H}$ — постоянная Ридберга, названная так по имени исследователя, впервые установившего это эмпирическое соотношение.

Теория Бора позволяет получить уравнение (16) следующим образом. Энергия перехода $E_{\rm H}$ электрона в атоме водорода из начального состояния I в конечное состояние II представляет собой разность энергий этих состояний:

$$E_{\rm H} = E_{\rm II} - E_{\rm I} \tag{17}$$

или, по уравнению (14),

$$E_{\rm H} = -\frac{2\pi^2 m_e e^4}{n_{\rm II}^2 h^2} - \left(-\frac{2\pi^2 m_e e^4}{n_{\rm I}^2 h^2}\right) =$$
(18)

$$= \frac{2\pi^2 m_e g^4}{h^2} \left(\frac{1}{n_{\rm I}^2} - \frac{1}{n_{\rm II}^2} \right). \tag{19}$$

Подставляя вместо $E_{\rm H}$ эквивалентную ей частоту света из уравнения (15), получим

$$\mathbf{v}_{11} = \frac{2\pi^2 m_e e^4}{h^3} \left(\frac{1}{n_1^2} - \frac{1}{n_{11}^2} \right). \tag{20}$$

Уравнение (20) совпадает с эмпирическим соотношением (16) при условии, что $n_{\rm I} = n$, $n_{\rm H} = m$, а $R_{\rm H} = (2\pi^2 m_{\rm e} {\rm e}^4)/\hbar^3$. По теории Бора вычислено следующее значение постоянной Ридберга:

$$R_{11} = \frac{2\pi^2 m_e e^4}{h^3} = \frac{2 (3,1416)^2 (9,1091 \cdot 10^{-28}) (4,8030 \cdot 10^{-10})^4}{(6,6256 \cdot 10^{-27})^3} = 3,2898 \cdot 10^{15} \ ce\kappa^{-1}.$$
(21)

Обычно $R_{\rm H}$ выражают не в единицах частоты, а в так называемых волновых числах \overline{v} . Волновые числа связаны с частотой соотношением

$$\mathbf{v} = c\mathbf{v},\tag{22}$$

где с - скорость света. Таким образом,

$$R_{\rm H} = \frac{3,2898 \cdot 10^{15} \ ce\kappa^{-1}}{2,9979 \cdot 10^{10} \ cm \cdot ce\kappa^{-1}} = 109\ 737 \ cm^{-1}.$$
 (23)

Экспериментальное значение $R_{\rm H}$, вычисленное с большой степенью точности, составляет 109 677,581 см⁻¹. Такое согласие теории с экспериментом явилось крупным успехом теории Бора.

Упражнения

1-3. Вычислите потенциал ионизации атома водорода.

Решение Потенциал ионизации (ПИ) атома или молекулы это эпергия, затрачиваемая на образование положительного иона из атома или молекулы в их основном состоянии при полном удалении одного электрона. В случае атома водорода происходит следующий процесс:

$$H \longrightarrow H^+ + e, \quad E = \Pi \mathcal{U}.$$

Используем уравнение (19):

$$E_{11} = \frac{2\pi^2 m_e e^4}{h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_{11}^2}\right).$$

В основном состоянии $n_1 = 1$, в состоянии с полностью удаленным электроном $n_{11} = \infty$. Таким образом,

$$\Pi \mathcal{M} = \frac{2\pi^2 m_e e^4}{h^2}.$$

Вспомним, что

$$a_0=\frac{h^2}{4\pi^2 m_e e^2},$$

и, следовательно,

$$\frac{1}{2a_0} = \frac{2\pi^2 m_e e^2}{h^2}.$$

Тогда

$$\Pi M = \frac{e^2}{2a_0} = \frac{(4,8030 \cdot 10^{-10} \text{ s.r. eq.})^2}{2(0,529 \cdot 10^{-8} \text{ c.m})} = 2,180 \cdot 10^{-11} \text{ spr.}$$

Обычно потенциалы ионизации выражают в электроновольтах Поскольку 1 эрг=6,2419 · 10⁻¹¹ эв,

 $\Pi \mathcal{U} = 2,180 \cdot 10^{-11} \ \mathfrak{z} pz = 13,60 \ \mathfrak{z} \mathfrak{s}.$

Экспериментальное значение ПИ атома водорода составляет 13,595 эв.

1-4. Вычислите третий потенциал ионизации атома лития

Решение. Атом лития состоит из ядра с зарядом +3(Z=3) и трех электронов. Первый потенциал ионизации ПИ₁ агома, содержащего больше одного электрона, равен энергин, необходимой для удаления одного электрона. В случае лития

$$Li \longrightarrow Li^+, E = \Pi M_1.$$

Второй потенциал нонизации — энергия, необходимая для удаления электрона из однозарядного положительного иона Li*:

$$Li^+ \longrightarrow Li^{2+}, E = \Pi M_2,$$

а третий потенциал ионизации — энергия, затрачиваемая на удаление последнего электрона из двухзарядного положительного иона Li²⁺

Задача о движении одного электрона вокруг ядра с зарядом +3 (или +Z) аналогична задаче с атомом водорода. Поскольку сила притяжения равна Ze²/r², условие устойчивости орбиты можно представить как

$$\frac{m_e v^2}{r} = \frac{Ze^2}{r^2}.$$

Введя это условие в решение, аналогичное решению для атома водорода, и снова используя квантовую гипотезу Бора

$$m_e vr = n \left(\frac{h}{2\pi}\right),$$

находим, что

$$r = \frac{n^2 h^2}{4\pi^2 m_e Z e^2}$$

И

$$E = -\frac{2\pi^2 m_e Z^2 e^4}{n^2 h^2}$$

Таким образом, для общего случая, когда заряд ядра равен Z, уравнение (19) можно записать в виде

$$E = \frac{2\pi^2 m_e Z^2 e^4}{h^2} \left(\frac{1}{n_{\rm I}^2} - \frac{1}{n_{\rm II}^2}\right)$$

или просто $E = Z^2 E_{\text{H}}$. Для лития Z = 3 и $\Pi M_3 = (3)^2 (2,180 \cdot 10^{-11} \text{ зр}2) = = 1,962 \cdot 10^{-10} \text{ зр}2 = 122,5 \text{ зе.}$

1-5. В эмиссионном спектре атомарного водорода имеется так называемая серия Лаймана. Спектральные линии этой серии возникают при переходе электрона из любых возбужденных состояний на уровень с n = 1. Вычислите квантовое число n возбужденного состояния электрона, при возврате из которого возникает линия серии Лаймана с частотой y = 97 492,208 см⁻¹.

Решение. Используем уравнение (20)

$$v_{\rm H} = \frac{2\pi^2 m_e e^4}{h^3} \left(\frac{1}{n_{\rm I}^2} - \frac{1}{n_{\rm II}^2} \right),$$

в котором n_{II} — квантовое число начального уровня, а $n_I = 1$ по условию для серии Лаймана. Экспериментальное значение

$$R_{\rm H} = \frac{2\pi^2 m_e e^4}{ch^3} = 109\ 677,581\ cm^{-1};$$

подставляя его в уравнение (20), получаем

97 492,208 = 109 677,581
$$\left(1 - \frac{1}{n_{11}^2}\right)$$
, r. e. $n_{11} = 3$.

1-4. Необходимость усовершенствования теории Бора

Идея о том, что электрон обращается вокруг ядра по строго определенной орбите подобно тому, как Луна обращается вокруг Земли, оказалась достаточно наглядной и удобной, поэтому теория Бора быстро получила всеобщее признание. Однако вскоре стало ясно, что такая простая теория не может разрешить всех вопросов строения атома. В частности, Зееман обнаружил, что эмиссионный спектр атома, находящегося в магнитном поле, более сложен, чем спектр такого же атома в отсутствие внешнего магнитного поля. Простая теория Бора не могла объяснить эффект Зеемана Немецкому физику Зоммерфельду удалось на некоторое время спасти теорию Бора. Зоммерфельд предположил, что электрон может двигаться не только по круговым, но и по эллиптическим орбитам. Объединенная теория Бора — Зоммерфельда описывала эффект Зеемана весьма точно.

Но даже теория Бора — Зоммерфельда оказалась бессильной в истолковании целого ряда особенностей спектра многоэлектронных атомов. Это было в период 1920-х годов, который ознаменовался весьма значительными успехами теоретической физики. В те годы благодаря идеям де Бройля, Шредингера и Гейзенберга в основу теории строения атома была положена волновая механика.

1-5. Электронные волны

В 1924 г. французский физик Луи де Бройль высказал предположение о том, что электроны, подобно световым волнам, движутся волнами. Наименьшие единицы света (кванты света) называются фотонами. Массу фотона можно вычислить по уравнению Эйнштейна, которое устанавливает эквивалентность массы и энергии:

$$E = mc^2. \tag{24}$$

Вспомним, что, согласно уравнению (15), энергия и частота света связаны между собой соотношением

$$E = hv. (25)$$

2 Г. Грей

Комбинируя уравнения (24) и (25), получаем

$$m = \frac{h\nu}{c^2}.$$
 (26)

Количество движения, или импульс, фотона *p* определяется выражением

Рис 2. Стоячая электронная волна с n = 5.

Подставляя массу фотона из уравнения (26) в (27), получаем

$$p = \frac{hv}{c} \,. \tag{28}$$

Поскольку частота v, длина волны λ и скорость v связаны соотношением

$$\lambda = \frac{v}{\nu}, \qquad (29)$$

можно записать, что

$$\lambda = -\frac{h}{p}.$$
 (30)

Уравнение (30) позволяет определить длину световой или электронной волны. Для того чтобы электрон, двигаясь по круговой боровской орбите, образовал стоячую волну (волновое условие устойчивой орбиты), на длине окружности орбиты должно укладываться целое число волн (см. рис. 2), или:

$$n\lambda = 2\pi r. \tag{31}$$

Подставляя значение і из уравнения (30), получаем

$$n\left(\frac{h}{p}\right) = 2\pi r$$

или

$$n\left(\frac{h}{2\pi}\right) = rp =$$
Момент количества движения. (32)

Таким образом, *волны де Бройля* позволяют обосновать постулат Бора о квантовании момента количества движения [уравнение (10)].

1-6. Принцип неопределенности

В 1927 г. Дэвиссон и Джермер установили, что при рассеянии электронов кристаллами наблюдается дифракция, аналогичная дифракции рентгеновских лучей. Результаты этих опытов подтвердили предположение де Бройля о том, что электрону присущи такие волновые свойства, как длина волны, частота, фаза и способность к интерференции. Однако они находились в явном противоречии с целым рядом других экспериментальных фактов, в частности с результатами Дж. Дж. Томсона, показавшего, что электрон представляет собой частицу с определенной массой, энергией и моментом количества движения.

Бор сделал попытку разрешить создавшееся противоречие, выдвинув так называемый *принцип дополнительности*. Согласно этому принципу, электрон не может одновременно обладать и волновыми, и корпускулярными свойствами; однако для описания реального поведения электрона необходимо учитывать и те, и другие свойства, которые взаимно дополняют друг друга. Вернер Гейзенберг объяснил кажущуюся двойствен-

Вернер Гейзенберг объяснил кажущуюся двойственную природу электрона, предложив другой принцип *принцип неопределенности*. Основная идея принципа неопределенности Гейзенберга состоит в том, что невозможно в любой данный момент времени определить и положение в пространстве, и импульс электрона. Минимальная возможная неточность при этих определениях равна постоянной Планка, деленной на 4π . В математической формулировке соотношение неопределенности имеет следующий вид.

$$(\Delta p_x)(\Delta x) \gg \frac{h}{4\pi}.$$
(33)

Здесь Δp_x — неопределенность в величине импульса, а Δx — неопределенность в положении частицы в пространстве. Таким образом, чем точнее удастся измерить импульс электрона, тем менее точно мы сможем установить его положение в просгранстве. Согласно принципу неопределенности, электрон нельзя представлять в виде частицы, движущейся от точки к точке, со строго определенным импульсом в каждой точке пространства. Имеет смысл говорить только о некоторой вероятности пребывания электрона в данной фиксированной точке пространства. В принципе невозможно произвести одновременное измерение с любой желаемой степенью точности таких физических величин, которые позволяют установить, является ли электрон частицей или волной. Таким образом, мы должны принять, что электрон представляет собой одновременно и частицу, и волну.

1-7. Волновая функция

Поскольку электрон обладает волновыми свойствами, его движение можно описать с помощью волновой функции ψ или $\psi(x, y, z)$ как функции координат x, y и z. Волновая функция может быть положительной, отрицательной или минмой величиной. Вероятность нахождения электрона в каком-либо элементарном объеме пропорциональна квадрату абсолютного значения волновой функции, интегрированной по всему данному объему. Таков физический смысл волновой функции. Таким образом, измеренную или вычисленную величину плотности электронного заряда следует относить не к ψ , а к $|\psi|^2$. Иначе говоря,

Вероятность
$$(x, y, z) \approx |\psi(x, y, z)|^2$$
. (34)

Следует отметить, что вероятность нахождения электрона в данном элементарном объеме должна выражаться действительным и положительным числом. Величина $|\psi|^2$ всегда удовлетворяет этому условню.

1-8. Волновое уравнение Шредингера

В 1926 г. австрийский физик Эрвин Шредингер предложил уравнение, связывающее энергию системы с ее волновым движением. Уравнение Шредингера обычно записывают в виде

$$H\psi = E\psi, \qquad (35)$$

где H — оператор Гамильтона, или гамильтониан (по имени английского физика Гамильтона). Этот оператор представляет в общем виде кинетическую и потенциальную энергию системы. E — числовое значение энергии для любого данного значения ψ . Волновые функции, для которых уравнение Шредингера имеет решение, называются собственными функциями; значения энергии E, вычисленные из таких решений, называются собственными значениями.

Уравнение Шредингера представляет собой сложное дифференциальное уравнение, и его можно решить точно только для очень простых систем. Одной из таких систем является атом водорода.

Решение уравнения Шредингера для атома водорода позволяет получить волновые функции общего вида

$$\psi_{nlm_l} = [N] [R_{nl}(r)] \Big[\Phi_{lm_l} \left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right) \Big].$$
(36)

Попытаемся выяснить смысл величин, входящих в это выражение.

1-9. Постоянная нормировки

N в выражении (36) называется *постоянной нормировки*. Эта постоянная определяется из условия

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|\psi|^2\,dx\,dy\,dz=1,$$
(37)

огражающего тот факт, что вероятность нахождения электрона где-либо в пространстве должна быть равна единице.

1-10. Радиальная часть волновой функции

 $R_{nl}(r)$ представляет собой радиальную часть волновой функции. Величина $|R_{nl}(r)|^2$ дает вероятность нахождения электрона на некотором расстоянии r от ядра. С радиальной частью волновой функции связаны два квантовых числа — n н l; n называется главным квантовым числом и определяет среднее расстояние электрона от ядра. Величина ψ_{nlm_l} может являться собственной функцией только при целых значениях n, равных 1, 2, 3 ... Квантовое число l определяет момент количества движения электрона. Величина ψ_{nlm_l} может являться собственной функцией при l=0, 1, 2, 3, ... до n - 1.

1-11. Угловая часть волновой функции

 $\Phi_{lm_l}(x/r, y/r, z/r)$ представляет собой угловую часть волновой функции. С угловой частью волновой функции связаны квантовые числа l и m_l . Число m_l называют магнитным квантовым числом. Оно определяет возможные значения проекции момента количества движения электрона на ось z в магнитном поле. Функция ψ_{nlm_l} можег быть собственной функцией при $m_l = +l, l-1, l-2, \ldots$ до -l.

1-12. Орбитали

Собственные функции атома водорода Ψ_{nlm_l} носят название *орбиталей*. В зависимости от значений квантового числа l различают орбитали разных типов. При l=0имеем *s*-орбиталь, l=1 - p-орбиталь, l=2 - d-орбиталь и l=3 - f-орбиталь. Обозначения *s*, *p*, *d*, *f* взяты из

Рис. 3. (а) Граничная поверхность s-орбитали. (б) Зависимость радиальной части волновой функции R(r) от r для Is-, 2s- и 3s-орбиталей. С увеличением r радиальная часть функции 2s меняет знак на противоположный. Таким образом, существует точка, в которой радиальная часть функции 2s равна нулю. Такую точку называют узлом. Радиальная часть функции 3s имеег два узла.

спектроскопической терминологии. Орбитали со значениями l больше 3 обозначают буквами в алфавитном порядке, за исключением буквы j. Таким образом, g-орбиталь соответствует l=4, h-орбиталь — l=5 и т. д.

Орбиталь полностью определена, если для нее указаны тип (s, p, d и т. д.), значения главного квантового числа n и магнитного квантового числа m_l . Значение n указывается перед буквой, означающей l. Значение m_l приводится в виде нижнего пндекса, так что полная сокращенная запись имеет вид nlm_l . При $m_l \neq 0$ орбитали nlm_l являются мнимыми функциями. Обычно удобнее использовать действительные функции, являющиеся линейными комбинациями функций nlm_l . Действительные орбитали атома водорода записывают сокращенно в виде nl с добавлением нижнего индекса, указывающего на

Рис. 4. (а) Граничные поверхности p-орбиталей. (б) Зависимость раднальной части волновой функции R(r) от r для 2p- и 3p-орбиталей. 3p-орбиталь имеет один узел.

угловую зависимость, например 2*pz*. В качестве примера в табл. 1 приведены все орбитали атома водорода для *n* от 1 до 3.

Часто для наглядности орбитали изображают графически как область пространства, в которой вероятность пребывания электрона достаточно велика. Следует иметь в виду, что плотность электронного облака определяется квадратом абсолютного значения волновой функции. Плоский рисунок на самом деле изображает объемную границу поверхности, внутри которой находится примерно 90% величины $|\psi|^2$, а знаки + и — относятся к угловой части самой функции ψ Такие изображения весьма полезны, и их следует запомнить. На рис. 3, 4, 5 и 6

Рис. 5. (а) Граничные поверхности d-орбиталей. (б) Зависимость радиальной части волновой функции R (r) от r для 3d-орбитали.

изображены граничные поверхности s-, p-, d- и f-орбиталей, а также кривые распределения радиальных частей соответствующих волновых функций.

Рис 6 (а) Граничные поверхности f-орбиталей. (б) Зависимость радиальной части волновой функции R (r) от r для 4f-орбитали.

Важнейшие	орбитали	атома	водорода а
-----------	----------	-------	------------

Квантовые Обо- числа значе- орбиталей ние		Обо- значе- ние	Радиальная функция 6 $R_{-1}(r)$	Угловая функция ^В $\phi_{Lm}\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)$	
n	l	m_t	орои- талей	nı ($\varphi_{lm_l}(r, r, r)$
1	0	0	15	2e ^{-r}	$\frac{1}{2\sqrt{\pi}}$
2	0	0	2 <i>s</i>	$-\frac{1}{2\sqrt{2}}(2-r)e^{-r^2}$	$\frac{1}{2\sqrt{\pi}}$
2	1	(1) 1	2p x	$\frac{1}{2\sqrt{6}} re^{-r/2}$	$\frac{\sqrt[4]{3}(x/r)}{2\sqrt[4]{\pi}}$
2	1	0	2 <i>pz</i>	$\frac{1}{2\sqrt{6}}re^{-r/2}$	$\frac{\sqrt[]{3}(z/r)}{2\sqrt[]{\pi}}$
2	1	(—1) ^г	2p _y	$\frac{1}{2\sqrt{6}} r e^{-r/2}$	$\frac{\sqrt{3}(y/r)}{2\sqrt{\pi}}$
3	0	0	35	$\frac{2}{81\sqrt{3}}(27-18r+2r^2) e^{-r_r^2}$	$\frac{1}{2\sqrt{\pi}}$
3	1	(1) r	3p _x	$\frac{4}{81\sqrt{6}}(6r-r^2)e^{-r/3}$	$\frac{\sqrt[4]{3}(x/r)}{2\sqrt{\pi}}$
3	1	0	3 <i>p</i> z	$\frac{4}{81\sqrt{6}}(6r-r^2)e^{-r/3}$	$\frac{\sqrt{3}(z/r)}{2\sqrt{\pi}}$
3	1	(1) ^г	3py	$\frac{4}{81\sqrt{6}}(6r-r^2)e^{-r3}$	$\frac{\sqrt{3}(y/r)}{2\sqrt{\pi}}$
3	2	(2) ^г	$\left 3d_{x^2-y^2} \right $	$\frac{4}{81\sqrt{30}}r^2e^{-r/3}$	$\frac{\sqrt{15}\left[(x^2-y^2)/r^2\right]}{4\sqrt{\pi}}$

а Радиальная и угловая функции нормированы к единице; r выражен в атомных единицах (т. е. в единицах a₀; см. упражнение 1-1).

^г Действительным функциям x, y, $x^2 - y^2$, xz, yz и xy нельзя приписывать значения m_j .

⁶ Для перехода к радиальной функции одноэлектронного атома с любым зарядом ядра Z радиус r заменяют величиной Zr/a_0 и каждую функцию умножают на $(Z/a_0)^{3/2}$.

В Часто выражают в сферических координатах как функцию θ и ϕ . Для перехода к этим координатам x заменяют выражением $r \sin \theta \cos \phi$; $y - r \sin \theta \sin \phi$ н $z - r \cos \theta$.

Продолжение т	абл. 1
---------------	--------

K oj	ванта чис рбита	овые 13 алей	Обо- значе ние	Ралиальная функция ^б <i>R_{n1} (1</i>)	Угловая функция ^В $\phi_{1,}\left(\frac{x}{x}, \frac{y}{y}, \frac{z}{z}\right)$
n	1	^m 1	талей	n	
3	2	(1) r	3d 12	$\frac{4}{81\sqrt{30}}r^2e^{-r/3}$	$\frac{\sqrt[1]{30}(xz/r^2)}{2\sqrt[1]{2\pi}}$
3	2	0	$3d_{z^2}$	$\frac{4}{81\sqrt[7]{30}}r^2e^{-r/3}$	$\frac{\sqrt{5} \left[(3z^2 - r^2)/r^2 \right]}{4 \sqrt{\pi}}$
3	2	(-1)	3d y2	$\frac{4}{81\sqrt{30}}r^2e^{-r/3}$	$\frac{\sqrt[4]{30}(yz r^2)}{2\sqrt[4]{2\pi}}$
3	2	(2)	3d _{v y}	$\frac{4}{81\sqrt[7]{30}}r^2e^{-r/3}$	$\frac{\sqrt{15} (xy/r^2)}{2\sqrt{\pi}}$
			1		

1-13. Спин электрона

Движение электрона вокруг ядра в атоме водорода полностью определяется значениями трех квантовых чисел — n, l и m_l . Для объяснения некоторых тонких эффектов в спектре атома водорода Гаудсмит и Уленбек в 1925 г. выдвинули гипотезу о наличии у электрона так (явления, аналогичного вращению называемого спина Земли вокруг собственной оси при движении ее по орбите вокруг Солнца). Спин электрона подчиняется правилам квантования, а величина его кратна 1/2. В связи с этим к нашему набору квантовых чисел следует добавить еще два квантовых числа — s и m_s. Величину s называют спиновым квантовым числом, или просто спи-ном, и для одного электрона s равно 1/2. Квантовое число m_s связано с s точно таким же образом, как m_l связано с l. а его значение может быть равно $+\frac{1}{2}$ или -1/2.

1-14. Теория многоэлектронных атомов

Точное решение уравнения Шредингера до сих пор не было получено ни для одного из атомов с двумя или более электронами. Орбитали многоэлектронных атомов отличаются от орбиталей атома водорода, тем не менее можно ожидать, что число орбиталей и характер их угловых частей будут такими же, как и для атома водорода. Поэтому для описания электронного строения многоэлектронных атомов можно использовать орбитали атома водорода. При таком способе описания каждый электрон характеризуют набором четырех квантовых чисел — n, l, m_l и m_s (s всегда равно 1/2) Кроме того, всегда должен соблюдаться принцип Паули: в одном и том же квантовом состоянии, характеризуемом определенными значениями четырех квантовых чисел, не может одновременно находиться более одного электрона.

Таким образом, при описании электронного строения атома мы заполняем или, как говорят, заселяем орбитали атома водорода таким числом электронов, которое имеется у данного атома. Один электрон можно поместить на любую орбиталь. Два электрона, если они обладают разными значениями m_s ($+^{1}/_2$ и $-^{1}/_2$), могут иметь одинаковые значения всех орбитальных квантовых чисел и, следовательно, занимать одну орбиталь. Максимальшое число электронов, которыми можно заселить различные орбитали, приводится в табл. 2.

Таблица 2

Тип орбитали	Орбитальные квантовые числа	Число орбиталей даиного типа	Макси- мальное число электронов на орбиталях данного типа
s	$l = 0; m_l = 0$	1	2
p	$l = 1; m_l = 1, 0, -1$	3	6
d	$l = 2, m_l = 2, 1, 0, -1, -2$	5	10
f	$l = 3; m_l = 3, 2, 1, 0, -1, -2, -3$	7	14

Характеристики s-, p-, d- и f-орбиталей

Группы орбиталей s, p, d, f и т. д. иногда называют подоболочками. Группа подоболочек, имеющая одно и то же значение n, образует оболочку.

Изучение электронных конфигураций основных состояний многоэлектронных атомов представляет очень большой интерес. Для определения основного состояния многоэлектронного атома орбитали заполняют электронами в порядке возрастания их энергин до тех пор, пока

Рис. 7. Энергегические уровни орбиталей нейтральных атомов,

не будут размещены все электроны. На основании экспериментальных данных установлено, что для различных орбиталей в многоэлектронных нейтральных атомах энергия возрастает в такой последовательности: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4 \hat{f} , 5d, 6p, 7s, 5 $\hat{f} \sim 6d$. На рис. 7 приведена диаграмма, на которой изображены эпергетические уровни для различных орбиталей нейтрального атома.

1-15. Термы Расселла — Саундерса

Состояние многоэлектронного атома удобно описать с помощью полного углового орбитального момента L и полного спина S (прописные буквы всегда употребляются для систем электронов; квантовые числа отдельных электронов обозначают строчными буквами). Рассмотрим схему Расселла — Саундерса LSM_LM_S более подробно.

Для системы, состоящей из *n* электронов, вводим определение:

$$M_L = m_{l_1} + m_{l_2} + m_{l_3} + \dots + m_{l_n}, \qquad (38)$$

$$M_{s} = m_{s_{1}} + m_{s_{2}} + m_{s_{3}} + \ldots + m_{s_{n}}.$$
 (39)

Кроме того, между L и M_L , S и M_S существуют следующие соотношения:

$$M_L = L, L - 1, L - 2, \dots, -L,$$
 (40)

$$M_{s} = S, S - 1, S - 2, \dots, -S.$$
 (41)

В качестве примера рассмотрим атом Li. Атомный номер (число протонов или электронов в нейтральном атоме) лития равен 3. Следовательно, орбитальная электронная конфигурация атома Li в основном состоянии имеет вид $(1s)^2(2s)^1$. Для определения терма LSM_LM_s основного состояния поступаем следующим образом:

1. Находим возможные значения М_L:

 $M_L = m_{l_1} + m_{l_2} + m_{l_3},$ $m_{l_1} = m_{l_2} = m_{l_3} = 0$ (для всех *s*-электронов), $M_L = 0.$

2. Находим возможные значения L:

$$M_L = 0,$$
$$L = 0.$$

3. Находим возможные значения M_s:

$$M_{S} = m_{s_{1}} + m_{s_{2}} + m_{s_{3}},$$

$$m_{s_{1}} = +\frac{1}{2}, \quad m_{s_{2}} = -\frac{1}{2}, \quad m_{s_{3}} = \pm \frac{1}{2},$$

$$M_{S} = +\frac{1}{2} \text{ или } -\frac{1}{2}.$$

4. Находим возможные значения S:

$$M_s = +\frac{1}{2}, -\frac{1}{2},$$

 $S = \frac{1}{2}.$

Терм Расселла — Саундерса сокращенно записывается как ^{2S+1}L. Верхний левый индекс показывает число различных значений M_S при любых возможных состояниях. Его часто называют спиновой мультиплетностью. Как и в случае одноэлектронных орбиталей, различные значения L обозначаются буквенными символами. (Значению L=0 соответствует терм S, L=1 — терм P, L=2 обозначается как D, L=3 — F и т. д.) В принятых обозначается как D, L=3 — F и т. д.) В принятых обозначается как D, L=3 — F и д.) В принятых обозначается как D, L=3 — F и д.) В принятых обозначениях терм основного состояния атома лития (L=0, $S=\frac{1}{2}$) записывается как ²S. В одном из возбужденных состояний литий имеет электронную конфигурацию (1s)² (2p)¹. Для этой конфигурации $M_L=1$, 0, —1 (L=1), а $M_S = \pm \frac{1}{2}$ ($S=\frac{1}{2}$). Следовательно, термом такого возбужденного состояния является терм ²P.

Конечно, атом лития — весьма простой пример. Нахождение термов основного и возбужденных состояний сложных электронных систем — более трудная задача. При этом существенную помощь может оказать составление таблицы возможных значений M_L и M_8 . Рассмотрим такую более универсальную процедуру на примере атома углерода.

В атоме углерода имеется 6 электронов, и орбитальная конфигурация основного состояния записывается как $(1s)^2(2s)^2(2p)^2$. Используем ее для нахождения терма основного состояния.

Прежде всего составим таблицу по образцу, показанному на рис. 8, а. В левый столбец выпишем возможные значения M_L , а в верхнюю этроку — возможные значения M_S . Будем рассматривать только электроны на незаполненных подоболочках. Заполненные оболочки и подоболочки мы можем не принимать во внимание, поскольку их вклад в величины M_L и M_S всегда равен нулю (убедитесь в этом, прежде чем составлять таблицу). Для атома углерода будем рассматривать конфигурацию $(2p)^2$. У каждого из этих двух p-электронов l=1, и,

M _L M _S	1	0	_1
2	(1,1) Паули "	(1,1)	
1	(⁺ , ⁺)	$(\dot{1}, \ddot{0}) = (\dot{1}, \dot{0})$	(1,0)
0	(1,-1)	$(\dot{1}, -\bar{1})$ $(\bar{1}, -\dot{1})$ $(\dot{0}, \bar{0})$	(1,-1)
-1	(-1,0)	(-1,0) $(-1,0)$	(-1,0)
- 2		(-1, -1)	

a

M _L M _S	1	0	-1
2		(\tilde{l},\tilde{l})	
1	(1,0)	(1,0) (1,0)	(1,0)
O	(1,-1)	$(\bar{1},-\bar{1})$; $(\bar{1},-\bar{1})$ $(\bar{0},\bar{0})$	(ī,-ī)
- 1	(-1,0)	(-1,0) $(-1,0)$	(-1,0)
-2		(-1,-1)	
		б	

Рис. 8. (а) Таблица микросостояний M_L , M_S для орбитальной конфигурации $(2p)^2$. (б) Таблица микросостояний M_L , M_S для орбитальной конфигурации $(2p)^2$ после вычеркивания шести микросостояний с $M_S = 1$ и $M_S = -1$ и трех произвольных микросостояний с $M_S = 0$, относящихся к терму ³P.

3 Г. Грей

следовательно, m_l может принимать значения, равные +1, 0 и -1. Поэтому возможны значения M_L от +2 до -2.

У каждого из двух *p*-электронов m_s может быть $+1/_2$ или $-1/_2$. Следовательно, для M_s возможны значения 1, 0 и -1.

Следующим этапом выпишем все разрешенные комбинации (называемые *микросостояниями*) значений m_l и m_s для двух *р*-электронов и разместим эти микросостояния в «ящики» с соответствующими значениями M_L и M_s . В общем виде такие микросостояния записываются так:

 $\begin{pmatrix} m_{s_1}m_{s_2}\dots m_{s_n} \\ m_{l_1}m_{l_2}\dots m_{l_n} \end{pmatrix} + для m_s = +\frac{1}{2}, \\ - для m_s = -\frac{1}{2}.$

Микросостояние, которое мы поместили в «ящик» с $M_L=2, M_S=1$, обозначим (1, 1). Но поскольку оба рассматриваемых электрона имеют одинаковые значения n н l(n=2 н l=1), это состояние не разрешено принципом Паули, и его следует вычеркнуть из таблицы.

Переходя к «ящику» с $M_L = 1$ и $M_S = 1$, помещаем в него разрешенное состояние (1, 0). Оба электрона могут иметь $m_l = +1$ и, следовательно, $M_L = 2$, если только значения m_s неодинаковы. Поэтому микросостояние (1,1) является разрешенным и помещается в «ящик» с $M_L = 2$ и $M_S = 0$. Эта процедура продолжается до тех пор, пока вся таблица не окажется заполненной.

Из заполненной таблицы можно выписать ²⁵⁺¹L-термы. Начнем слева сверху. Для микросостояния с $M_L=1$ и $M_S=1$ L=1 и S=1; следовательно, это терм ³P. Из уравнений (40) и (41) видно, что терм с L=1 и S=1включает все возможные комбинации значений $M_L=$ =1, 0, -1 и $M_S=1$, 0, -1. Поэтому к ³P-терму наряду с микросостоянием $M_L=1$, $M_S=1$ должны также относиться следующие микросостояния: $M_L=0$, $M_S=1$; $M_L=$ =-1, $M_S=1$; $M_L=1$, $M_S=0$; $M_L=0$, $M_S=0$; $M_L=-1$, $M_S=0$; $M_L=1$, $M_S=-1$; $M_L=0$, $M_S=-1$; $M_L=-1$, $M_s = -1$. Таким образом, терм ³*P* включает всего девять микросостояний. Исключив из таблицы эти девять микросостояний, мы получаем новую таблицу, изображенную на рис. 8, δ .

В верхней строке имеем микросостояние с $M_L=2$, $M_S=0$, которое принадлежит терму ¹D, поскольку L=2и S=0. Терм ¹D должен включать также микросостояния $M_L=1$, $M_S=0$; $M_L=0$, $M_S=0$; $M_L=-1$, $M_S=0$; $M_L=-2$, $M_S=0$. Если исключить эти пять комбинаций терма ¹D, то останется еще одно микросостояние в «ящике» с $M_L=0$, $M_S=0$. Это микросостояние определяется значениями L=0, S=0 и принадлежит терму ¹S.

Таким образом, мы получаем три терма: ³P, ¹D и ¹S, которые охватывают все разрешенные микросостояния электронной конфигурации (2*p*)². Терм основного состояния всегда имеет максимальную мультиплетность спина. Таково *первое правило Гунда*. Следовательно, основное состояние атома углерода характеризуется термом ³P.

Термы ¹D и ¹S относятся к возбужденным состояниям орбитальной электронной конфигурации $(2p)^2$. Второе правило Гунда гласит, что из двух состояний с одинаковой мультиплетностью спина более устойчивым обычно является состояние с бо́льшим значением L. Действительно, в случае атома углерода состояние ¹D более устойчиво, чем ¹S.

Упражнения

1-6. Найдите термы основного и возбужденных состояний для наиболее устойчивой орбитальной электронной конфигурации атома титана.

Решение. Атомный номер титана 22 Наиболее устойчивая орбитальная электронная конфигурация $(1s)^2(2s)^2(2p)^6(3s)^2(3p)^6(4s)^2(3d)^2$. Единственная незаполненная подоболочка — 3d. Обратимся к табл. 3

для M_L , M_s -значений конфигурации $(3d)^2$. Микросостояние (2,1) принадлежит терму ³F, в котором насчитывается всего 21 микросостояние. В ящике с $M_L=1$, $M_s=1$ имеются два микросостояния. Здесь

появляется также терм ³*P*. Микросостояние (2, 2) относятся к терму ¹*G*. Термы ¹*D* и ¹*S* включают остальные микросостояния в столбце с $M_s = 0$.

Терм основного состояния должен иметь максимальную спиновую мультиплетность; следовательно, это должен быть терм ³F или

Таблица З

Значения	М.,	M_{ς}	для	конфигурации	$(3d)^2$
----------	-----	-----------------	-----	--------------	----------

М	M _S				
L	1	()	1		
4		(2, 2)			
3	(2, 1)	(2, 1) (2, 1)	(2, 1)		
2	(2, 0)	(2, 0) $(2, 0)$ $(1, 1)$	(2, 0)		
1	(1, 0) (2, -1)	(1, 0) $(1, 0)(2, -1)$ $(2, -1)$	(1, 0) (2, -1)		
0	(22) (1, -1)	$ \begin{array}{c} \stackrel{+}{(2, -2)} & \stackrel{-}{(2, -2)} \\ \stackrel{+}{(1, -1)} \\ \stackrel{+}{(1, -1)} & \stackrel{+}{(0, 0)} \end{array} $	(2, -2) (1, -1)		
—1	(-1, ⁺ ₀) (⁺ ₁ , - ⁻ ₂)	(-1, 0) (-1, 0) (-2, 1) (-2, 1)	(-1, 0) (1, -2)		
-2	(2, 0)	$(-2, \overline{0}) (-2, \overline{0}) (-1, -1)$	(2, 0)		
3	(-2, -1)	(-2, -1) $(-2, -1)$	(-2, -1)		
4		(- <u>2</u> , - <u>2</u>)			

³Р. Но состояние ³*F* отвечает большему значению углового момента (L=3) и предпочтительнее в качестве основного состояния. Действительно, экспериментально найдено, что у атома титана термом основного состояния является ³*F* Первое возбужденное состояние отвечает терму ³*P*, а состояния ¹*G*, ¹*D* и ¹*S* еще более неустойчивы.

1-7. С помощью табл 4 найдите термы орбитальной электронной конфигурации $(3d)^{+}(4d)^{+}$ и определите наиболее устойчивое состояние.

Решение. Задача в случае $(3d)^1(4d)^1$ мало отличается от случая $(3d)^2$. Оба электрона являются электронами *d*-типа с l=2, но ++

у одного n=3, а у другого n=4 Таким образом, состояние (2,2) принципом Паули уже не запрещается, поскольку квантовые числа n для них различны.

Подсчет состояний облегчается добавлением индекса 4 к значению *m*_l для 4*d*-электрона.

Из таблицы для конфигурации $(3d)^1(4d)^1$ выписываем следующие термы: ³G, ³F, ³D, ³P, ³S, ¹G, ¹F, ¹D, ¹P и ¹S На основании правил о спиновой мультиплетности и угловом моменте заключаем, что нанболее устойчивым должно быть состояние ³G.

1-16. Потенциалы ионизации

Потенциал понизации (сокращенно ПИ) атома представляет собой минимальную энергию, необходимую для полного удаления электрона из атома. Такой процесс можно записать следующим образом:

Атом + ПИ (энергия) →

→ Однозарядный положительный ион + Электрон. (42)

Для всех атомов, кроме атома водорода, возможна дальнейшая ионизация. Энергию, затрачиваемую на удаление первого электрона, обозначают ПИ₁, последующие потенциалы ионизации обозначают ПИ₂, ПИ₃, ПИ₄ и т. д. Совершенно очевидно, что для любого атома возможно столько потенциалов ионизации, сколько у него имеется электронов.

В табл. 5 приведены первые потенциалы иопизации атомов. Легко понять, что первый потенциал ионизации ПИ₁ всегда является наименьшим из всех значений для данного атома, так как отрицательно заряженную частицу легче отделить от нейтрального атома, чем от положительно заряженного иона.
Значения M_L , M_S для конфигурации $(3d)^1 (4d)^1$

A1	M _S		
¹ ^m L	1	0	-1
4		(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	(2, 24)
3	$(2, 1_4) (2_4, 1)$	$(\overset{+}{2}, \overset{-}{1}_{4})$ $(\overset{-}{2}, \overset{+}{1}_{4})$ $(\overset{+}{2}_{4}, \overset{-}{1})$ $(\overset{-}{2}_{4}, \overset{+}{1})$	$(\overline{2}, \overline{1}_4)$ $(\overline{2}_4, \overline{1})$
2	$ \begin{array}{c} (\stackrel{+}{2}, \stackrel{+}{0}_{4}) (\stackrel{+}{2}_{4}, \stackrel{+}{0}) \\ \stackrel{+}{(1, 1_{4})} \end{array} $	$(\overset{+}{2}, \ \overline{0}_{4})$ $(\overset{-}{2}, \ \overset{+}{0}_{4})$ $(\overset{+}{2}, \ \overset{+}{0})$ $(\overset{-}{2}_{4}, \ \overset{+}{0})$ $(\overset{+}{1}, \ \overset{+}{1}_{4})$ $(\overset{+}{1}, \ \overset{+}{1}_{4})$	$(\overline{2}, \overline{0}_4) \ (\overline{2}_4, \overline{0})$ $(\overline{1}, \overline{1}_4)$
1	$(\overset{+}{1}, \overset{+}{0}_{4}) (\overset{+}{1}_{4}, \overset{+}{0}) \\ (\overset{+}{2}, -\overset{+}{1}_{4}) (\overset{+}{2}_{4}, -\overset{+}{1})$	$(\vec{1}, \vec{0}_{4}) (\vec{1}, \vec{0}_{4}) (\vec{1}_{4}, \vec{0}) (\vec{1}_{4}, \vec{0}) (\vec{2}, -\vec{1}_{4}) (\vec{2}, -\vec{1}_{4}) (\vec{2}_{4}, -\vec{1}) (\vec{2}_{4}, -\vec{1})$	$(\overline{1}, \overline{0}_{4}) \ (\overline{1}_{4}, \overline{0})$ $(\overline{2}, -\overline{1}_{4}) \ (\overline{2}_{4}, -\overline{1})$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(-\overline{1}, \overline{0}_4) (-\overline{1}_4, \overline{0})$ $(-\overline{2}, \overline{1}_4) (-\overline{2}_4, \overline{1})$	$(-2, \ 0,) \ (-2, \ 0)$ $(-1, \ -1,)$	$(-\overline{2}, -\overline{1}_{4}) (-\overline{2}_{4}, -\overline{1})$	(2,24)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(-\frac{1}{2}, -\overline{1}_{4})$ $(-\overline{2}, -\overline{1}_{4})$ $(-2_{4}, -\overline{1})$ $(-\overline{2}_{4}, -\overline{1})$	$(-\frac{1}{2}, -\frac{1}{2}, (-\frac{1}{2}, -\frac{1}{2})$
$ \begin{array}{c} \stackrel{+}{\scriptstyle 1} & -\stackrel{+}{\scriptstyle 1} & \stackrel{+}{\scriptstyle 1} & -\stackrel{+}{\scriptstyle 1} \\ (1, & -\stackrel{+}{\scriptstyle 1}) & (1, & -\stackrel{+}{\scriptstyle 1}) \\ (2, & -\stackrel{+}{\scriptstyle 2}) & (2_4, & -2) \\ (0, & 0_4) \end{array} $	(-1, 0, 0, (-1, 0) (-2, 1, 0, (-2, 1)	$(-\frac{1}{2}, 0_4)$ $(-2_4, 0)$ $(-1, -1_4)$	$(-2, -1_4)$ $(-2_4, -1)$	(-2, -2 ₄)
0	-	2	-3	4

Таблица 5

Электронные конфигурации и потенциалы ионизации атомов

Ζ	Атом А	Орбитальная электронная конфигурация атома А	Терм основ- ного состояния	ПИ ₁ , эв ^а
1	H	15	2 <i>S</i>	13.595
2	Не	$1s^2$	1S	24,580
3	Li	(He] 2s	2 S	5,390
4	Be	[He] $2s^2$	15	9,320
5	В	[He] $2s^22p$	2 <i>P</i>	8,296
6	С	[He] $2s^2 2p^2$	3Р	11,264
7	N	[He] $2s^2 2p^3$	4S	14,54
8	0	[He] 2s ² 2p ⁴	3P	13,614
9	F	[He] 2s ² 2p ⁵	2P	17,42
10	Ne	[He] $2s^22p^6$	15	21,559
11	Na	[Ne] 3s	2S	5,138
12	Mg	[Ne] 3s ²	15	7,644
13	AI	[Ne] 3s ² 3p	^{2}P	5,984
14	Si	[Ne] $3s^2 3p^2$	зР	8,149
15	Р	[Ne] 3s ² 3p ³	4S	11,0
16	S	[Ne] 3s ² 3p ⁴	³ P	10,357
17	CI	[Ne] 3s ² 3p ⁵	^{2}P	13,01
18	Ar	[Ne] $3s^23p^6$	1 <i>S</i>	15,755
19	К	[Ar] 4s	2S	4,339
20	Ca	[Ar] 4s ²	18	6,111
21	Sc	[Ar] 4s ² 3d	^{2}D	6,56
22	Ti	[Ar] $4s^23d^2$	³ <i>F</i>	6,83
23	V	[Ar] $4s^23d^3$	4F	6,74
24	Cr	[Ar] 4s3d ⁵	⁷ S	6,763
25	Mn	[Ar] 4s ² 3d ⁵	6S	7,432
26	Fe	[Ar] $4s^23d^6$	⁵ D	7,90
27	Co	[Ar] 4s ² 3d ⁷	4 <i>F</i>	7,86
28	Ni	[Ar] $4s^23d^8$	^{3}F	7,633
29	Cu	[Ar] 4s3d10	25	7,724
30	Zn	$[\Lambda r] 4s^2 3d^{10}$	1S	9,391
31	Ga	[Ar] $4s^23d^{10}4p$	2P	6,00
32	Ge	[Ar] $4s^2 3d^{10} 4p^2$	3P	7,88
				1

Продолжение табл. 5

Z	Атом А	Орбитальная электронная конфигурация атома А	Терм основ- ного состояния	ПИ ₁ , эв ^а
33	As	[Ar] $4s^23d^{10}4v^3$	4S	9.81
34	Se	[Ar] $4s^23d^{10}4p^4$	3P	9,75
35	Br	[Ar] $4s^23d^{10}4p^5$	^{2}P	11,84
36	Kr	[Ar] $4s^23d^{10}4p^6$	15	13,996
37	Rb	[Kr] 5s	2 S	4,176
38	Sr	$[Kr] 5s^2$	1S	5,692
39	Y	$[Kr] 5s^2 4d$	² D	6,5
40	Zr	$[Kr] 5s^2 4d^2$	^{3}F	6,95
41	Nb	$[Kr] 5s4d^4$	⁶ D	6,77
42	Mo	[Kr] 5s4d ⁵	⁷ S	7,10
43	Tc	$[Kr] 5s^2 4d^5$	⁶ S	7,28
44	Ru	$[Kr] 5s4d^7$	⁵ F	7,364
45	Rh	$[Kr] 5s4d^8$	4 <i>F</i>	7,46
46	Pd	$[Kr] 4d^{10}$	15	8,33
47	Ag	[Kr] 5s4d ¹⁰	2 <i>S</i>	7,574
48	Cď	$[Kr] 5s^2 4d^{10}$	^{1}S	8,991
49	In	[Kr] $5s^24d^{10}5p$	^{2}P	5,785
50	Sn	[Kr] $5s^24d^{10}5p^2$	3Р	7,342
51	Sb	[Kr] $5s^24d^{10}5p^3$	45	8,639
52	Те	[Kr] $5s^24d^{10}5p^4$	³ P	9,01
53	I	$[Kr] 5s^2 4d^{10}5p^5$	^{2}P	10,454
54	Xe	[Kr] $5s^24d^{10}5p^6$	IS IS	12,127
55	Cs	[Xe] 6s	2 <i>S</i>	3,893
56	Ba	[Xe] 6s ²	1S	5,210
57	La	$[Xe] 6s^25d$	^{2}D	5,61
58	Ce	[Xe] $6s^24f5d$	³ //	6,91 б
59	Pr	[Xe] $6s^24f^3$	4 <i>J</i>	5,76 ⁶
60	Nd	[Xe] $6s^24f^4$	⁵ /	6,31 ⁶
61	Pm	[Xe] $6s^{2}4f^{5}$	⁶ H	
62	Sm	[Xe] $6s^{2}4f^{6}$	7F	5,6 ⁶
63	Eu	[Xe] $6s^24f^7$	⁸ S	5,67 ⁶
64	Gd	[Xe] $6s^24f^75d$	⁹ D	6,16 ⁶
65	Tb	[Xe] $6s^24f^9$?	⁶ H	6,74 ⁶
	•	•	1	•

Продолжение табл. 5

Z	Атом А	Орбитальная электронная конфигурация атома А	Терм основ- ного состояния	1111 ₁ , 98 ^a
6 6	Dy	[Xe] $6s^24f^{10}$	5/	6,82 ⁶
67	Ho	[Xe] $6s^24f^{11}$	41	
68	Er	[Xe] $6s^24f^{12}$	3Н	6,08 в
69	Tu	$[Xe] 6s^24f^{13}$	2F	5,81 r
70	Yb	$[Xe] 6s^24f^{14}$	1S	6,2 6
71	Lu	[Xe] $6s^24f^{14}5d$	2D	5,0 ⁶
7 2	Hſ	$[Xe] 6s^24f^{14}5d^2$	3 <i>F</i> -	
73	Та	[Xe] $6s^24f^{14}5d^3$	4 <i>F</i>	7,88
74	W	$[Xe] 6s^24f^{14}5d^4$	5D	7,98
7 5	Re	[Xe] $6s^24f^{14}5d^5$	6S	7,87
7 6	Os	$[Xe] 6s^{2}4f^{14}5d^{6}$	5D	8,7
77	Ir	$[Xe] 6s^2 4f^{14} 5d^7$	4 <i>F</i>	9,0
78	Pt	[Xe] $6s4f^{14}5d^9$	^{3}D	9,0
79	Au	[Xe] $6s4f^{14}5d^{10}$	2S	9,22
80	Hg	[Xe] $6s^24f^{14}5d^{10}$	1S	10.43
81	T1	$[Xe] 6s^24f^{14}5d^{10}6p$	2P	6,106
82	Рb	[Xe] $6s^24f^{14}5d^{10}6p^2$	⁸ P	7,415
83	Bi	[Xe] $6s^24f^{14}5d^{10}6p^3$	4S	7,287
84	Po	$[Xe] 6s^2 4 f^{14} 5 d^{10} 6 p^4$	₿Р	8 43
85	At	[Xe] $6s^24f^{14}5d^{10}6p^5$	2P	
86	Rn	[Xe] $6s^24f^{14}5d^{10}6p^6$	¹ S	10,746
87	Fr	[Rn] 7s	2S	
88	Ra	[Rn] 7s ²	15	5,277
89	Ac	[Rn] 7s ² 6d	^{2}D	
90	Th	[Rn] $7s^{2}6d^{2}$	³ F	6,95 д
91	Pa	[Rn] $7s^{2}5f^{2}6d$	4 <i>K</i>	
92	U	[Rn] $7s^{2}5f^{3}6d$	5 <u>/</u>	6,1 д
93	Np	[Rn] $7s^{2}5f^{4}6d$	6L	1
94	Pu	[Rn] $7s^{2}5f^{6}$	⁷ F	5,1 e
95	Am	[Rn] $7s^25f^7$	⁸ S	60ж
96	Cm	[Rn] $7s^{2}5f^{7}6d$	°D	
97	Bk	[Rn] 7s ² 5f ⁹	⁶ H	
98	Cf	[Rn] $7s^25f^{10}$	5/	
99	Es	[Rn] 7s ² 5f ¹¹	41	
] .	

Ζ	Атом А	Орбитальная электронная конфигурация атома А	Терм основ- пого состояния	ПИ1, эв ^а
100	Fm	[Rn] 7s ² 5f ¹²	°Н	
101	Md	[Rn] $7s^25f^{13}$	^{2}F	
102	No	$[Rn] 7s^25f^{14}$	1 <i>S</i>	
103	Lw	[Rn] $7s^25f^{14}6d$	² D	
			ł	

Продолжение табл 5

^а Все данные, за исключением указанных особо, взяты из материалов НБС (Moore C. E., Atomic Energy Levels, NBS Circular 467, 1949, 1952 and 1958)

 6 Moeller T., The Chemistry of the Lanthanides, Reinhold Publishers, New York, 1963, p. 37.

^вИонов Н. И., Мицев М. А., ЖЭТФ, 40, 741 (1961).

^г Blatse J., Vetter R., С. R., **256**, 630 (1963). ^п Zmbov K. F., Bull. Borls Kiditch Inst. Nucl. Sci., **13**, 17 (1962).

^e Dawton R. H. U. M., Wilkinson K. L., Atomic Energy Research Estab. (Gt. Brlt.), GR/R, **1906** (1956).

^ж Fred M., Tompkins F. S., J Opt. Soc. Am., 47, 1076 (1957).

В каждой группе периодической таблицы потенциал ионизации уменьшается с увеличением атомного номера элемента. Возьмем, например, атомы лития и цезия. В основном состоянии литий, у которого ПИ₁=5,390 эв, имеет электронную конфигурацию [He]2s. У атома цезия ПИ₁=3,893 эв, а его электронная конфигурация — [Xe]6s. 2s-Электрон атома Li находится вблизи ядра значительно большее время, чем 6s-электрон атома Cs. В результате эффективный заряд ядра $Z_{
m sol}$, действующий на 2s-электрон в атоме Li, значительно больше, чем Z_{эф}, действующий на 6*s*-электрон в атоме Cs (см. рис. 9).

Если проследить по периодам периодической таблицы, то можно видеть, что ПИ, как правило, возрастают слева направо, причем наименьшие значения ПИ характерны для атомов щелочных металлов, а наибольшие -для атомов инертных газов. Однако это правило в ряде случаев нарушается, поскольку у атомов с заполненными или наполовину заполненными подоболочками потенциалы нонизации оказываются выше ожидаемых. Например, атом Ве ([He] $2s^2$) имеет ПИ₁=9,320 эв, а у

Рис. 10. Зависимость потенциала ионизации атомов от атомного номера.

атома В ([He] $2s^22p^4$) ПИ₁=8,296 эв; N ([He] $2s^22p^3$) имеет ПИ₁=14,54 эв, а у О ([He] $2s^22p^4$) ПИ₁=13,614 эв. Возрастание эффективного заряда ядра от Li к Nе приводит к увеличению потенциала ионизации от 5,390 эв для Li до 21,559 эв для Ne. Неравномерность этого возрастания обусловлена тем, что при переходе от Li к Ne электроны, которые попадают на 2s- и 2p-орбитали, не могут полностью экранировать друг друга от возрастающего заряда ядра.

На рис. 10 показано изменение потенциала понизации атомов с увеличением атомного номера.

1-17. Сродство к электрону

Сродство к электрону (сокращенно СЭ) атома представляет собой энергию, которая выделяется (или затрачивается, если сродство отрицательно) при присоединении к атому электрона с образованием отрицательного иона. Таким образом, можно записать:

Атом + Электрон →

→ Однозарядный отрицательный ион + CЭ (энергия).

(43)

К сожалению, из-за больших экспериментальных трудностей точные значения СЭ известны лишь для немногих атомов. Перечень этих значений приводится в табл. 6.

Атомы галогенов обладают сравнительно высокими СЭ, поскольку отрицательные галоген-поны имеют устойчивые заполненные электронные оболочки. Атомы с заполненными подоболочками часто имеют отрицательные СЭ. Примером могут служить атомы Be, Mg и Zn.

Интересно отметить, что атомы группы азота с электронной конфигурацией $s^2p^3({}^4S)$ имеют очень низкие значения СЭ. Это служит дополнительным доказательством повышенной устойчивости наполовину заполненных подоболочек.

Таблица б

Сродство атомов к электрону

Атом А	Орбитальная электронная конфигурация атома А	СЭ, эв	Орбитальная электронная конфигурация иона А
H	1s	0,747 a	He
F	[He] $2s^2 2p^5$	3,45 6	Ne
C1	[Ne] 3s ² 3p ⁵	3,61 6	Ar
Br	[Ar] $4s^23d^{10}4p^5$	3,36 6	Kr
I	[Kr] $5s^24d^{10}5p^5$	3,06 6	Xe
0	[He] $2s^22p^4$	1,47 в	[He] 2s ² 2p ⁵
S	[Ne] $3s^23p^4$	2,07 r	[Ne] $3s^2 3p^5$
Se	[Ar] $4s^23d^{10}4p^4$	(1,7) ^д	[Ar] $4s^23d^{10}4p^5$
Te	[Kr] $5s^24d^{10}5p^4$	(2,2) ^д	$[Kr] 5s^2 4d^{10}5p^5$
N	[He] $2s^22p^3$	(0,1) e	[He] 2s ² 2p ⁴
Р	[Ne] 3s ² 3p ³	(0,7) e	[Ne] $3s^2 3p^4$
As	[Ar] $4s^23d^{10}4p^3$	(0,6) e	$[Ar] 4s^2 3d^{10} 4p^4$
C	[He] $2s^2 2p^2$	1,25 ж	[He] $2s^2 2p^3$
Si	[Ne] $3s^23p^2$	(1,63) e	[Ne] 3s ² 3p ³
Ge	[Ar] $4s^2 3d^{10} 4p^2$	(1,2) e	$[Ar] 4s^2 3d^{10} 4p^3$
B	[He] 2s ² 2p	(0,2) a	[He] $2s^2 2p^2$
A1	[Ne] 3s ² 3p	(0,6) ^a	[Ne] $3s^2 3p^2$
Ga	[Ar] $4s^23d^{10}4p$	(0,18) e	$[Ar] 4s^2 3d^{10} 4p^2$
In	[Kr] $5s^24d^{10}5p$	(0,2) e	[Kr] $5s^24d^{10}5p^2$
Be	[He] 2s ²	(0,6) a	[He] 2s ² 2p
Mg	[Ne] 3s ²	(0,3) a	[Ne] 3s ² 3p
Li	[He] 2s	(0,54) a	[He] 2 <i>s</i> ²
Na	[Ne] 3s	(0,74) a	[Ne] 3 <i>s</i> ²
Zn	$[Ar] 4s^2 3d^{10}$	(0,9) e	[Ar] $4s^2 3d^{10} 4p$
Cd	[Kr] 5s ² 4d ¹⁰	(0,6) e	[Kr] 5 <i>s</i> ² 4 <i>d</i> ¹⁰ 5 <i>p</i>
1			

^a Skinner H. A., Pritchard H. O., Trans Faraday Soc., 49, 1254 (1953).

⁶ Berry R. S., Riemann C. W., J. Chem. Phys., 38, 1540 (1963). ^B Branscomb L. M., Nature, 182, 248 (1958).

- ^r Branscomb L. M., Smith S. J., J. Chem. Phys., 25, 598 (1956).
- ^A Pritchard H. O., Chem. Revs., 52, 529 (1953).
- e Ginsburg A P., Miller J. M., J. Inorg. Nucl. Chem., 7, 351 (1958). ³⁶ Seman M. L, Branscomb L. M, Phys. Rev., 125, 1602 (1962).

Дополнительные упражнения

1. (а) Сравните скорость электрона на четвертой боровской орбите и радиус этой орбиты со скоростью электрона и радиусом первой боровской орбиты. (б) Выведите выражение для скорости электрона на боровской орбите в зависимости только от главного квантового числа *n*.

2. Вычислите энергию электрона на боровской орбите с n=3.

3. Вычислите второй потенциал ионизации для атома Не.

4. Вычислите частоты первых трех линий серии Лаймана (линии с наиболеє низкой частотой).

5. Серня Бальмера в спектре атома водорода образуется за счет переходов электрона с высших уровней на уровень с n=2. Определите, какие из линий серии Бальмера попадают в видимую часть спектра (видимый свет имеет длины волн от 4000 до 7000 Å).

6. Соблюдая принцип Паули и правила Гунда, определите орбитальные конфигурации и число неспаренных электронов в основном состоянии следующих атомов: а) Ni; б) S; в) Ca; г) Fe; д) Br.

7. Найдите термы следующих орбитальных конфигураций и в каждом случае определите терм с самой низкой энергией: a) 2s; б) $2p^3$; в) $2p^23s$; г) 2p3p; л) 2p3d; e) $3d^3$; ж) $3d^5$; з) $3d^9$; и) 2s4f; к) $2p^5$; л) $3d^34s$.

8. Найлите терм основного состояния для следующих атомов: a) Si; б) Mn; в) Rb; г) Ni.

ДВУХАТОМНЫЕ МОЛЕКУЛЫ

2-1. Ковалентная связь

Молекулой мы называем любое устойчивое образование из двух или более атомов. Простейшая нейтральная молекула образуется из двух атомов водорода и представляет собой молекулу водорода H₂. Молекула H₂ гомонуклеарная, так как оба атомных ядра, участвующих в образовании молекулы, идентичны.

Рис. 11. Схематическое изображение двух сближающихся атомов водорода.

Совокупность сил, удерживающих два атома водорода в молекуле H_2 , описывают словом *связь*. Эта связь достаточно сильна, поскольку при обычной температуре водород существует исключительно в виде молекул. Только при очень высоких температурах молекулы H_2 распадаются на атомы. Попытаемся представить себе образование связи в молекуле H_2 при сближении двух атомов водорода, как это показано на рис. 11. Если атомы подойдут друг к другу на достаточно близкое расстояние, между ними возникают электростатические силы двух гипов. во-первых, сила притяжения между ядром одного атома (H_a) и электроном другого атома $(1s_b)$ и сила притяжения между ядром атома H_b и электроном $1s_a$; во-вторых, силы отталкивания между ядрами H_a и H_b и между электронами $1s_a$ и $1s_b$.

Увеличение R

Рис. 12. Зависимость энергии системы, состоящей из двух атомов водорода, от расстояния между ядрами.

Соотношение между притяжением и отталкиванием меняется при изменении расстояния H_a — H_b . На достаточно больших расстояниях преобладают силы притяжения, причем сближение атомов (до определенного предела) способствует возрастанию роли этих сил. При дальнейшем уменьшении расстояния H_a — H_b начинают преобладать силы отталкивания, которые резко возрастают на очень коротких расстояниях.

Происходящие при эгом изменения энергии системы показаны на рис. 12. Энергия уменьшается до тех пор.

4 Г. Грей

нока увеличение сил отталкивания на очень коротких расстояниях между ядрами не приводит к ее возрастанию. Минимум на эпергетической кривой отвечает наиболее устойчивому межъядерному расстоянию в молекуле H₂, а также показывает выигрыш в энергии такой системы по сравнению с энергией двух изолированных атомов.

Рис. 13. Связь в молекуле водорода за счет пары электронов.

Одна из наиболее ранних удачных попыток объяснить образование химической связи за счет взаимодействия электронов принадлежит американскому физикохимику Дж. Н. Льюису. Согласно Льюису, каждый из двух атомов, вступающих в химическую связь, предоставляет в общее владение по одному электрону, так что пара электронов принадлежит одновременно двум атомам. При этом атомы стремятся достроить свои электронные оболочки по конфигурации следующего инертного газа. Таким образом, атомы в молекуле водорода, по теории Льюиса, удерживаются вместе парой электронов (рис. 13). При этом пара электронов принадлежит обоим атомам водорода, и каждый из них приобретает устойчивую конфигурацию гелия 1s². Такая связь, в которой пара электронов обобщена между обоими атомами, называется ковалентной связью.

Начиная с этой главы весь последующий материал книги посвящен изложению современных представлений о химической связи в некоторых важных классах молекул. Особое внимание будет уделено теории молекулярных орбиталей, хотя мы часто будем сравнивать выводы, полученные на основании этой теории, с результатами метода валентных связей. Среди большого количества исследователей, способствовавших развитию обеих этих теорий, следует особо отметить имена Р. С. Малликена (теория молекулярных орбиталей) и Лайиуса Полинга (метод валентных связей).

2-2. Теория молекулярных орбиталей

Согласно методу молекулярных орбиталей, электрон в молекуле можно описать волновой функцией, охватывающей несколько центров (ядер атомов). В наиболее простом приближении молекулярная орбиталь представляет собой линейнию комбинацию атомных орбиталей. В рамках этого приближенного метода предполагается. что, когда электрон молекулы находится в непосредственной близости от какого-либо атома, молекулярная волновая функция приблизительно равна атомной орбитали этого атома. Молекулярная орбиталь образуется в результате простого сложения или вычитания соответствующих атомных орбиталей. Указанный метод расчета обычно называют методом ЛКАО-МО, по начальным буквам выражения линейная комбинация атомных орбиталей — молекулярные орбитали. Метод молекулярных орбиталей мы будем в дальнейшем называть сокращенно методом МО.

Достаточно устойчивые атомные орбитали, которые используются для образования связи, называются валентными орбиталями. Валентными считаются не только те орбитали, которые можно использовать для достижения атомом электронной структуры следующего инертного газа, но также и любые другие достаточно устойчивые орбитали, даже если при их использовании конфигурация инертного газа не будет достигнута. Например, 1s-орбиталь атома водорода является валентной, а 2s- и 2p-орбитали нельзя использовать для образования прочной связи из-за их слишком высокой энергии.

2-3. Связывающие и разрыхляющие молекулярные орбитали

Рассмотрим схему образования связи по теории МО на примере простейшей молекулы, которая состоит из двух протонов и одного электрона. Это так называемый молекулярный пон водорода, H_2^+ . Каждый атом водорода в молекуле H_2^+ имеет валентную 1s-орбиталь (см. рис. 14). Между двумя ядрами ясно видна область перекрывания этих атомных орбиталей. Такое перекрывание получается в результате простого сложения или вычитания орбиталей атомов при построении молекулярных орбиталей.

Линейную комбинацию двух атомных 1s-орбиталей можно осуществить двумя различными способами. Вопервых, их можно сложить (см. рис. 15). Глядя на рисунок, легко убедиться в том, что электрон на МО І значительную часть времени проводит в области перекрывания между ядрами На и Нь. В результате сила притяжения между электроном и ядрами достигает очень большой величины, и электрон на такой МО более истойчив, чем на 1s-орбитали любого изолированного атома. Такого рода МО мы называем связывающей. Указанная МО симметрична относительно оси, проходящей через оба ядра. Действительно, если через ядра На и Нь провести стрелку и затем вращать ее вместе с молекулой вокруг собственной оси, то внешний вид МО остаиется неизменным при любом повороте (рис. 16). Такую орбиталь с цилиндрической симметрией называют молекулярной о-орбиталью *. о-Связывающие МО сокращенно обозначаются осв

^{*} В действительности молекулярной оторбиталью является любая молекулярная орбиталь, не имеющая узловой плоскости, которая содержит ось, соединяющую ядра,

Изменений после вращения не наблюдается

Рис. 16. Вращение связывающей МО в ноне H⁺₂ вокруг оси, проходящей через ядра.

Вторая возможность построения линейной комбинации состоит в вычитании атомных 1s-орбиталей водорода друг из друга (рис. 17). Этот тип MO имеет узел в области между двумя ядрами. Таким образом, электрон, находящийся на MO II, никогда не будет находиться посередине между ядрами; вместо этого он будет пребывать в основном вне области перекрывания. Электрон на MO II менее устойчив, чем электрон на 1s-орбитали изолированного атома водорода. О такой орбитали принято говорить, что она является *разрыхляющей*. Разрыхляющая MO обладает цилиндрической симметрией и, таким образом, также является *σ*-орбиталью. Ее обозначают *σ*^{разр}.

2-4. Энергетические уровни молекулярных орбиталей

Приближенные волновые функции для молекулярных σ^{cB} и σ^{pa3p} -орбиталей можно записать следующим образом:

$$\psi(\sigma^{\rm cb}) = N^{\rm cb} (1s_a + 1s_b), \tag{44}$$

$$\psi(\sigma^{\text{pasp}}) = N^{\text{pasp}} (1s_a - 1s_b). \tag{45}$$

Уравнения (44) и (45) являются аналитическими выражениями для молекулярных орбиталей, изображенных на рис. 15 и 17. Значения констант N^{cB} и N^{pa3p} В этих уравнениях определяются из условия нормировки:

$$\int |\psi|^2 \, dx \, dy \, dz = \int |\psi|^2 \, d\tau = 1. \tag{46}$$

Вычислим N^{cB} . Подставив $\psi(\sigma^{cB})$ в уравнение (46), получим

$$\int [\psi(\sigma^{c_{B}})]^{2} d\tau = 1 = \int [N^{c_{B}}(1s_{a} + 1s_{b})]^{2} d\tau =$$
$$= (N^{c_{B}})^{2} \Big[\int (1s_{a})^{2} d\tau + \int (1s_{b})^{2} d\tau + 2 \int (1s_{a})(1s_{b}) d\tau \Big]. \quad (47)$$

В случае, если атомные орбитали 1s_a и 1s_b уже нормированы,

$$\int (1s_a) (1s_a) d\tau = \int (1s_b) (1s_b) d\tau = 1.$$
 (48)

54

Интеграл, включающий произведение ls_a и ls_b , называется интегралом перекрывания и обозначается буквой S:

$$S =$$
 Интеграл перекрывання = $\int (1s_a)(1s_b) d\tau$. (49)

Таким образом, уравнение (47) приводится к виду $(N^{\text{св}})^2 |2 + 2S| = 1,$ (50)

откуда

$$N^{\rm cB} = \pm \sqrt{\frac{1}{2(1+S)}} \,. \tag{51}$$

В нашей приближенной схеме при определении постоянной нормпровки можно пренебречь величиной

 $l_{s_a} - l_{s_b} = MO \parallel$

Рис. 17. Схема образования разрыхляющей МО в ионе H₂⁺.

интеграла перекрывания *. Произвольно выбирая положительный знак в уравнении (51), получаем

$$N^{\rm cs} = \sqrt{\frac{1}{2}} \,. \tag{52}$$

^{*} Такое предположение в случае H_2^+ приводит на самом деле к довольно заметной ошибке. Интеграл перекрывания между $1s_a$ и 1 s_b в H_2^+ в действительности равен 0,590. При таком значении S постоянная нормировки $N^{c\,B}=0,560$, что существенно отличается ог $N^{c\,B}=0,707$, вычисленного при условни S=0. Однако в большинстве других случаев перекрывание значительно меньше (обычно порядка 0,2—0,3), и подобное предположение не приводит к существенной ошибке.

Точно таким же образом можно вычислить величину *N*^{разр}, подставив уравнение (45) в (46) и решая его относительно *N*^{разр}. В результате

$$N^{\rm pasp} = \pm \sqrt{\frac{1}{2(1-S)}}$$
(53)

или при S=0

$$N^{\text{pasp}} = \sqrt{\frac{1}{2}} \,. \tag{54}$$

Таким образом, приближенные молекулярные орбитали для H₂⁺ имеют следующий вид:

$$\psi(\sigma^{c_{\rm B}}) = \frac{1}{\sqrt{2}} (1s_a + 1s_b), \tag{55}$$

$$\psi(\sigma^{\text{pasp}}) = \frac{1}{\sqrt{2}} (1s_a - 1s_b).$$
 (56)

Для вычисления эпергии этих молекулярных орбиталей воспользуемся уравнением Шредингера

$$H\psi = E\psi. \tag{57}$$

После умножения обеих частей уравнения (57) на ψ и последующего интегрирования получим

$$\int \psi H \psi \, d\tau = E \int \psi^2 \, d\tau. \tag{58}$$

Поскольку $\int \psi^2 d\tau = 1$, уравнение (58) сводится к виду

$$E = \int \psi H \psi \, d\tau. \tag{59}$$

Подставляя (55) в уравнение (59), получаем

$$E[\psi(\sigma^{c_{B}})] = \int [\psi(\sigma^{c_{B}})] H[\psi(\sigma^{c_{B}})] d\tau =$$

= $\frac{1}{2} \int (1s_{a} + 1s_{b}) H(1s_{a} + 1s_{b}) d\tau =$
= $\frac{1}{2} \int (1s_{a}) H(1s_{a}) d\tau + \frac{1}{2} \int (1s_{b}) H(1s_{b}) d\tau +$
+ $\frac{1}{2} \int (1s_{a}) H(1s_{b}) d\tau + \frac{1}{2} \int (1s_{b}) H(1s_{a}) d\tau.$ (60)

Не вычисляя огдельные интегралы в уравиении (60), упростим это выражение, введя следующие обозначения:

$$q_a = \int (1s_a) H(1s_a) d\tau, \tag{61}$$

$$q_b = \int (1s_b) H(1s_b) d\tau, \qquad (62)$$

$$\beta = \int (1s_a) H(1s_b) d\tau = \int (1s_b) H(1s_a) d\tau.$$
(63)

В случае молекулы H_2^+ , поскольку ls_a и ls_b представляют собой эквивалентные атомные орбитали,

$$q_a = q_b = q. \tag{64}$$

Назовем q_a и q_b кулоновскими интегралами. Кулоновский интеграл представляет собой энергию, необходимую для отрыва электрона с данной атомной орбитали в поле действия ядер и остальных электронов молекулы. Иногда его называют валентным потенциалом ионизации.

Интеграл β носит название обменного интеграла. В некоторых случаях его называют также резонансным или ковалентным интегралом. Ранее было показано, что электрон, находящийся на молекулярной орбите σ^{c_B} , значительную часть времени проводит в области перекрывания между обонми ядрами. Находясь в этой области пространства, электрон приобретает дополнительную устойчивость благодаря действию сил притяжения к ядрам. Обменный интеграл β представляет собой величину такой дополнительной стабилизации при образовании ковалентной связи.

Упростив уравнение (60), мы получаем окончательно

$$E\left[\psi\left(\sigma^{\text{c}B}\right)\right] = q + \beta. \tag{65}$$

Таким же путем находим энергию разрыхляющей молекулярной орбитали σ^{разр}. Подстановка в уравнение (59) дает

$$E[\psi(\sigma^{\text{pasp}})] = \frac{1}{2} \int (1s_a - 1s_b) H(1s_a - 1s_b) d\tau = q - \beta.$$
(66)

Полученный результат показывает, что разрыхляющая орбиталь менее устойчнва, чем связывающая, на величину, равную —2β. Находясь на молекулярной орбитали о^{разр}, электрон имеег очень малую вероягность пребывания в энергетически выгодной области перекрывания атомных орбиталей. Значительно большую часть времени он проводит на периферии молекулы, где энергия намного выше, чем в средней ее части.

Соотношение между энергиями молекулярных орбиталей удобно представить на диаграмме. Такая диаграмма для H₂⁺ показана на рис. 18. Валентные орбитали

Орбиталь На Молекулярные орбитали Орбиталь Нь

Рис. 18. Энергетические уровни МО иона Н₂⁺.

атомов расположены по краям диаграммы; их положение соответствует величине их кулоновской энергии. Наиболее устойчивым валентным орбиталям отвечает нижняя часть диаграммы. Поскольку кулоновские энергии орбиталей 1s_a и 1s_b одинаковы, эти орбитали находятся на одном уровне.

Энергии молекулярных орбиталей указаны в средней части диаграммы. Нетрудно видеть, что орбиталь осв более устойчива, чем исходные валентные 1s-орбитали, а орбиталь орбиталь сответственно менее устойчива.

Очевидно, что электрон в основном состоянии H₂⁺ будет занимать более устойчивую молекулярную орбиталь, т. е.

Основное состояние $H_2^+ = \sigma^{cB}$.

Упражнение

2-1. Вычислите энергии орбиталей обви оразо молекулы H_2^+ с учетом интеграла перекрывания S. Покажите, что если интеграл перекрывания отличен от нуля, дестабилизация оразо превышает стабилизацию обв.

2-5. Молекула водорода

Электронное строение молекул, имеющих больше одного электрона, можно представить следующим образом. Составив линейные комбинации валентных орбиталей атомов, входящих в молекулу, найдем молекулярные орбитали, а затем разместим все имеющиеся электроны на наиболее устойчивых молекулярных орбиталях. Выше мы уже нашли молекулярные орбитали для системы из двух протонов и двух атомных 1s-орбиталей. орбитали пригодны для рассмотрения молекул Эти H_2^+ , H_2 , H_2^- и т. д. В молекуле водорода имеется два электрона, которые, судя по диаграмме энергетических уровней (рис. 18), лучше всего поместить на уровень σ^{св}. Однако такое размещение в соответствии с принципом Паули осуществимо лишь в том случае, если электроны имеют разные спиновые квантовые числа (m_s). Таким образом, основное состояние $H_2 = (\sigma^{cB})^2$ или [$\sigma^{cB}(m_s = +1/2)$][$\sigma^{cB}(m_s = -1/2)$], или в сокращенном виде $(\sigma^{CB})(\sigma^{CB}).$

Представление о характере связи в молекуле H₂, полученное по методу MO, оказывается аналогичным представлению Льюиса о связи, образованной за счет пары электронов (рис. 13). Используя упомянутую идею Льюиса, мы будем считать, что любая нормальная связь между двумя атомами должна осуществляться с помощью двух электронов. В таком случае общее количество связей в молекуле определится следующим образом:

Число связей = (Число электронов на связывающих МО) – (Число электронов на разрыхляющих МО) 2 (67)

Можно полагать, что один электрон, находящийся на разрыхляющей МО, понижает устойчивость системы на

такую же величину, на какую ее повышает один электрон на связывающей МО. В соответствии с формулой (67) в молекуле H₂ имсется одна целая σ-связь, а в H₂⁺ — половина σ-связи.

2-6. Длины связей в Н₂ и Н₂

Длина связи является экспериментально определяемой величиной, характеризующей электронное строение молекулы. В случае двух атомов стандартная длина связи представляет собой равновесное межатомное расстояние^{*}. Длины связей обычно выражают в ангстремах (1 $A = 10^{-8}$ см) и обозначают буквой R. В основном

$$\left(H - \frac{R = I_{,06} \hat{R}}{1 - 1} H \right)^{\dagger} = \frac{I}{2} \sigma^{-} C \theta R 3 L$$

H $\frac{R=0,74\text{ Å}}{1 \sigma}$ H 1σ -coss

Рис. 19. Сопоставление нона H₂⁺ и молекулы H₂.

состоянии иона H_2^+ и молекулы H_2 длины связей составляют соответствению 1,(5 и 0,74Å (рис. 19). Таким образом, связь в молекуле H_2 , в которой имеется одна целая о-связь, короче, чем в H_2^+ , где осуществляется только половина о-связи. Вообще молекулы с наибольшим числом связей характеризуются наиболее короткими межатомными расстояниями.

^{*} Строго говоря, ядерные остовы молекул постоянно колеблются. Например, в молекуле Н₂ за счет колебания связь то укорачивается, то удлиняется в соответствии со следующей схемой.

Равновесное межатомное расстояние, относительно которого колеблется ядерный остов молекулы, равно стандартной длине связи.

2-7. Энергии связей в H_2^+ и H_2

Другой полезной экспериментальной величиной, отражающей электронное строение молекул, является энергия диссоциации связи. В случае связи между двумя атомами стандартная энергия диссоциации связи определяется как энергия, необходимая для разрыва молекулы на изолированные атомы в их основном состоянии, т. е.

 $H_2 + Энергия диссоциации связи \rightarrow H + H.$ (68)

Энергия связи измеряется в *ккал/моль* и обозначается символом D. Молекула H_2 с одной целой σ -связью обладает большей энергией связи, чем H_2^+ . Это также является следствием общего правила, согласно которому энергия связи в аналогичных молекулах возрастает с увеличением числа связей.

2-8. Магнитные свойства H_2^+ и H_2

В зависимости от поведения в магнитном поле различают вещества парамагнитные и диамагнитные. Парамагнитное вещество втягивается в магнитное поле с силой, пропорциональной произведению напряженности поля и его градиента. Диамагнитное вещество, наоборот, выталкивается из магнитного поля.

Атомы или молекулы, имеющие неспаренные электроны $(S \neq 0)$, парамагнитны. Поскольку электрон обладает спином, неспаренный электрон создает постоянный магнитный момент. Наряду с постоянным спиновым магнитным моментом может возникать постоянный орбитальный магнитный момент за счет движения электрона вокруг ядра (или нескольких ядер в случае молекулы). Помимо постоянного парамагнитного момента, в атомах или молекулах, помещенных во внешнее магнитное поле, наводится индуцированный магнитный момент. Такой индуцированный момент всегда направлен противоположно действию поля и способствует выталкиванию вещесгва из магнитного поля. Величина этого выталкивания является мерой диамагнетизма атома или молекулы.

Парамагнетизм атомов и небольших молекул, возникающий за счет неспаренных электронов, обычно больше индуцированного диамагнетизма; такие вещества втягиваются в магнигное поле. Атомы или молекулы, не обладающие неспаренными электронами (S=0), всегда диамагнитны и выталкиваются из магнитного поля.

Ион H_2^+ имеет один неспаренный электрон (S=1/2) и поэгому *парамагнитен*. В молекуле H_2 электроны спарены (S=0), и она *диамагнитна*.

2-9. Гомонуклеарные двухатомные молекулы элементов второго периода периодической системы

Перейдем теперь к атомам элементов, расположенных во втором периоде периодической системы элементов Менделеева, а именно Li, Be, B, C, N, O, F и Ne.

Рис. 20. Система координат для молекулы типа А₂.

Валентными орбиталями этих атомов являются 2s-, $2p_{x}$ -, $2p_{y}$ - и $2p_{z}$ -орбитали. Прежде всего необходимо выбрать систему координат для любой гомонуклеарной молекулы типа A_{2} , ввиду того что различные 2p-орбитали поразному ориентированы в пространстве. В качестве единой оси для всех молекул мы выбираем ось z (рис. 20). Молекулярные орбитали будут получаться при сложении или вычитании атомных орбиталей, способных перекрываться между собой.

σ-Орбитали

Как видно из рис. 21, 2s- и 2p_z-орбитали могут перекрываться, давая молекулярные *о*-орбитали. Нор-

Рис. 21. (а) Перекрывание двух валентных 2s-орбиталей молекулы A₂. (б) Перекрывание двух валентных 2p_z-орбиталей молекулы A₂.

мированные функции для них имеют следующий вид:

$$\psi(\sigma_s^{\rm CB}) = \frac{1}{\sqrt{2}} (2s_a + 2s_b), \tag{69}$$

$$\psi\left(\sigma_{s}^{\text{pasp}}\right) = \frac{1}{\sqrt{2}} \left(2s_{a} - 2s_{b}\right),\tag{70}$$

$$\psi(\sigma_{z}^{c_{B}}) = \frac{1}{\sqrt{2}} \left(2p_{z_{a}} + 2p_{z_{b}} \right), \tag{71}$$

$$\Psi(\sigma_{z}^{\text{pasp}}) = \frac{1}{\sqrt{2}} \left(2p_{z_{a}} - 2p_{z_{b}} \right). \tag{72}$$

Отметим, что молекулярные σ_z -орбитали симметричны относительно осн z.

л-Орбитали

Орбитали 2px и 2py не обладают осевой симмегрней относительно оси z. При перекрывании двух 2px-орбиталей возникает молекулярная орбиталь, изображенная на рис. 22. По одну сторону от оси z такая молекулярная волновая функция имеет знак +, по другую сторону — знак —. Таким образом, при повороте на 180° вокруг оси z эта орбиталь меняет знак на противоположный. Исходная орбиталь может быть при этом получена умножением функции на -1. Иначе говоря, такая орбиталь имеет, как показано на рис. 23, узловую плоскость, совпадающую с плоскостью *ху*. Молекулярные орбитали такого типа носят название π-орбиталей. Очевидно, что при перекрывании двух атомных 2ру-орбиталей получается молекулярная п-орбиталь, для которой узловой плоскостью является плоскость xz. Существуют π -связывающие (π^{cB}) и π -разрыхляющие (π^{pa3p}) молекулярные орбитали; более устойчивые псв-орбитали характеризуются повышенной плотностью электронов в области между двумя ядрами (по обе стороны от узловой пло-скости). Менее устойчивая л^{разр}-орбиталь в области ме-жду ядрами имеет узел. На рис. 24 показаны граничные поверхности молекулярных σ- и π-орбиталей для молекул типа A2, образованных за счет валентных 2s- и 2pорбиталей атомов. Нормированные волновые функции для π-МО имеюг следующий вид:

$$\psi(\pi_x^{c_B}) = \frac{1}{\sqrt{2}} \left(2p_{x_a} + 2p_{x_b} \right), \tag{73}$$

$$\psi(\pi_x^{\text{pasp}}) = \frac{1}{\sqrt{2}} \left(2p_{x_a} - 2p_{x_b} \right), \tag{74}$$

$$\psi(\pi_{y}^{c_{\mathsf{B}}}) = \frac{1}{\sqrt{2}} \left(2p_{y_{a}} + 2p_{y_{b}} \right), \tag{75}$$

$$\psi(\pi_{y}^{\text{pasp}}) = \frac{1}{\sqrt{2}} \left(2p_{y_{a}} - 2p_{y_{b}}\right). \tag{76}$$

Составим теперь диаграмму энергетических уровней таких молекулярных орбиталей. Известно, что в многоэлектронных атомах 2s-уровень значительно более устойчив, чем 2p. Например, в эмиссионном спектре атома

Рис. 22. Перекрывание 2*р*_х-орбиталей в молекуле А₂.

Рис. 23. Поворот л-МО на 180° вокруг оси, проходящей через ядра.

лития имеется красная линия с энергией 1,85 эв, обусловленная переходом электрона с 2*p*-орбитали на 2s.

 $\pi_y^{\ cs}$ и $\pi_y^{\ pasp}$ эквивалентны $\pi_x^{\ cs}$ и $\pi_x^{\ pasp}$

Рис. 24. Граничные поверхности о-и л-МО, образованных за счет валентных s- и p-орбиталей в гомонуклеарной двухатомной молекуле.

В атоме фтора разность энергий 2s- и 2p-уровней превышает 20 эв. Поэтому на диаграмме энергетических уровней 2p-орбиталь следует поместить выше 2s-орбитали*. Далее изобразим σ^{c_B} , $\sigma^{pa_{3p}}$, π^{c_B} , и $\pi^{pa_{3p}}$ -орбитали,

^{*} Энергин орбиталей нейтральных атомов приведены в приложении

учитывая бо́льшую устойчивость связывающих и меньшую устойчивость разрыхляющих энергетических уровней. Такие диаграммы приведены на рис. 25. Отпосительное расположение осв- и лев- уровней в

Относительное расположение σ_z^{cB-} и π_{xy}^{cB-} уровней в общем случае неопределенно. Если энергии σ_z^{cB-} и π_{xy}^{cB-} уровней отличаются значительно, то, вероятно, σ_z^{cB-} орбиталь более устойчива, чем π_{xy}^{cB} , как это изображено на рис. 25. Следует подчеркнуть, что при достаточно большой разности энергий 2s- и 2p-уровней молекулярную σ_s -орбиталь с хорошим приближением можно считать составленной только из двух атомных 2s-орбиталей. В случае же малой разности энергий между 2s- и 2pуровнями, применяя метод ЛКАО—МО, их следует учитывать совместно. В таком случае наиболее устойчивой МО окажется комбинация

$$\psi(\sigma_{s}^{CB}) = \frac{1}{\sqrt{2(1+\tau^{2})}} (2s_{a} + \tau 2p_{z_{a}} + 2s_{b} + \tau 2p_{z_{b}}),$$

где коэффициент τ меньше единицы и является мерой относительного участия 2*p*-орбитали в σ^{св}-МО.

Дополнительная стабилизация σ_s^{cb} и σ_s^{pasp} за счет такой гибридизации должна сопровождаться дестабилизацией σ_z^{cb} - и σ_z^{pasp} -уровней, причем эти орбитали приобретают частичный 2s-характер. Этот эффект схематически изображен на рис. 26.

В конечном счете любая заметная *s*—*p*-гибридизация приводит к тому, что σ_z^{cb} -орбиталь становится менее устойчивой, чем π_{xy}^{cb} (рис. 25, б). В дальнейшем мы увидим, что у всех двухатомных молекул, для которых имеются надежные экспериментальные данные, σ_z^{cb} -орбиталь менее устойчива, чем $\pi_{x,y}^{cb}$.

На рис. 25 энергетические уровни орбиталей $\pi_x^{c_B}$ и $\pi_y^{c_B}$ изображены одинаковыми. Интегралы перекрывания для этих орбиталей равны между собой. Таким образом, молекулярные орбитали $\pi_x^{c_B}$ и $\pi_y^{c_B}$ имеют

5*

Рис 25 Энергетические уровни МО гомонуклеарных двух атомных молекул без взаимодействия $\sigma_s - \sigma_z$ (*a*) и при заметном взаимодействии $\sigma_s - \sigma_z$ (*b*).

одинаковую энергию, или, в общепринятой терминологии, являются вырожденными.

Используя полученные представления об энергетических уровнях молекулярных орбиталей, рассмотрим

Рис. 26. Схема влияния взаимодействия $\sigma_s - \sigma_z$ на энергию уровней σ_s^{cb} , σ_s^{pasp} , σ_z^{cb} и σ_z^{pasp} .

электронное строение молекул типа A₂, состоящих из элементов второго периода периодической системы.

Молекула Li2

В атоме лития имеется один валентный 2s-электрон. Разность энергий 2s- и 2p-состояний невелика, поэтому связывающая МО о в молекуле Li₂, несомненно, приобретает заметный р-характер. Основное состояние молекулы имеет электронную конфигурацию $(\sigma_s^{cB})^2$, так как оба валентных электрона находятся на σсв-МО. Отсутствие неспаренных электронов в этой молекуле доказано экспериментально. Поскольку на связывающей МО находятся два электрона, а разрыхляющая МО не занята, в Li2 имеется одна чистая связь. Длина этой связи равна 2,67 Å. Заметное увеличение межатомного распо сравнению с расстоянием в молекуле Н2 стояния (R=0,74 Å) в некоторой мере обусловлено экранировалентных о^{св}-электронов электронами ванием на внутренних 1s-орбиталях. Такое экранирование дотжно уменьшать взаимное пригяжение между ядрами и валентными электронами. Кроме того, в молекуле Li₂ проявляется взаимное отталкивание двух ls-электропных пар — эффект, отсутствующий в молекуле H₂ и также способствующий увеличению межатомного расстояния. Энергии связей в H₂ и Li₂ составляют соответственио 103 и 25 ккал/моль. Понижение энергии связи в случае Li₂, несомненно, тоже обусловлено наличием внутренних ls-электронных пар.

Молекула Вер

Валентная конфигурация атома бериллия 2s². Молекула Be₂ должна иметь электронную конфигурацию $(\sigma_s^{\rm cB})^2 (\sigma_s^{\rm pa3p})^2$, которая соответствует отсутствию связей [(2-2)/2=0]. Как и следует ожидать, молекула Be₂ не обнаружена.

Молекула В2

Валентная конфигурация атома бора $2s^22p^1$. Электронная конфигурация молекулы B_2 определяется относительным расположением молекулярных уровней $\sigma_z^{\rm CB}$ и $\pi_{x,y}^{\rm CB}$. Экспериментальные данные указывают на наличие в молекуле B_2 двух неспаренных электронов, находящихся на уровне $\pi_{v,y}^{\rm CB}$. Таким образом, в основном состоянии B_2 имеет электронную конфигурацию $(\sigma_s^{\rm CB})^2 (\sigma_s^{\rm CB})^2 (\pi_{x,y}^{\rm CB}) (\pi_{y,y}^{\rm CB})$, что соответствует одной результирующей связи. Межатомное расстояние в B_2 составляет 1,59 Å, энергия связи равна 69 ккал/моль.

Молекула С2

Валентная конфигурация атома углерода $2s^22p^2$. Молекулярные уровни $\sigma_z^{c_B}$ и $\pi_{x, y}^{c_B}$ располагаются таким образом, что конфигурации $(\sigma_s^{c_B})^2 (\sigma_s^{p_3q_p})^2 (\pi_{x, y}^{c_B})^4$ и $(\sigma_s^{c_B})^2 (\sigma_s^{p_3q_p})^2 (\pi_{x, y}^{c_B})^3 (\sigma_z^{c_B})$ энергетически почти эквивалентны В настоящее время принято счигать основным состояние с конфигурацией $(\sigma_s^{c_B})^2 (\sigma_s^{p_3q_p})^2 (\pi_{x, y}^{c_B})^4$ (выигрыш в эпергип по сравнению со второй возможной конфигурацией не превышает 0,1 эв). Количество неспаренных электронов в указанном состоянии равно пулю. Данная конфигурация отвечает наличию двух π -связей. Эго означает, что $\sigma_z^{\rm cB}$ должна иметь в C₂ значительно более высокую энергию, чем $\pi_{x,y}^{\rm cB}$, так как низшее состояние конфигурации $(\sigma_s^{\rm cB})^2 (\sigma_s^{\rm pasp})^2 (\pi_{x,y}^{\rm cB})^3 (\sigma_z^{\rm cB})$ имеет два неспаренных электрона (вспомните первое правило Гунда). Наличие в C₂ двух связей согласуется с найденным экспериментально значением энергии связи 150 ккал/моль и межатомным расстоянием R 1,31 Å.

Молекула N2

Валентная конфигурация атома азота $2s^22p^3$. В соответствии с экспериментально установленным диамагнетизмом молекулы N₂ ее электронная конфигурация имеет вид $(\sigma_s^{cn})^2 (\sigma_s^{paap})^2 (\pi_{x,y}^{cb})^4 (\sigma_z^{cb})^2$. В молекуле азота три результирующие связи (одна о и две π). Такое количество связей является максимальным для молекул тина A₂. Молекула отличается очень большой устойчивостью, исключительно высоким значением энергии связи (225 ккал/моль) и очень коротким межатомным расстоянием (R = 1, 10 Å).

Часто встречается утверждение, что высшим занятым уровнем в молекуле N_2 является уровень $\pi_{x,y}^{c_B}$. Однако нзвестно, что ионизация молекулы N_2 приводит к образованию иона N_2^+ , в котором отсутствует не $\pi_{x,y}^{c_B}$, а $\sigma_z^{c_B}$ -электрон и электронная конфигурация которого имеет вид $(\sigma_s^{c_B})^2 (\sigma_{x,y}^{pa_3p})^2 (\pi_{x,y}^{c_B})^4 (\sigma_z^{c_B})$. Таким образом, высшей занятой орбиталью в N_2 следует считать $\sigma_z^{c_B}$.

Молекула О2

Конфигурация основного состояния атома кислорода $2s^22p^4$. Электронная конфигурация молекулы $O_2 (\sigma_s^{cB})^2 (\sigma_s^{cB})^2 (\sigma_z^{cB})^2 (\pi_{\lambda, \nu}^{cB})^4 (\pi_x^{paap}) (\pi_y^{paap})$. Два электрона на орбиталях $\pi_{\lambda, \nu}^{paap}$ имеют в основном состоянии одинаковый спин. Таким образом, молекула O_2 имеет ∂sa

I

L

неспаренных электрона. Действительно, молекула O₂ парамагнитна, и найденная экспериментально величина ее парамагнетизма отвечает наличию двух неспаренных электронов. Предсказание парамагнетизма молекулы киелорода с помощью метода молекулярных орбиталей вызвало большой интерес к этой теории, поскольку в рамках представлений Льюиса об образовании химической связи наличие двух неспаренных электронов в молекуле O₂ было совершенно необъяснимо.

В молекуле кислорода имеются две связи (одна о, другая π). Энергия связи в O2 составляет 118 ккал/моль, межатомное расстояние равно 1,21 А. Весьма интересно поучительно проследить, как меняется межатомное И расстояние при изменении числа электронов на уровне празр. Точное значение R в нейтральной молекуле со-и. и. ставляет 1,2074 Å. Межатомное расстояние в молекулярном ионе O₂⁺, который получается при удалении одного электропа с уровня $\pi^{pasp}_{x, y}$ понижено до 1,1227 А. Уменьшение межатомного расстояния обусловлено тем, что формально число связей в этом случае возрастает с двух до 21/2. Наоборот, введение дополнительного электрона на уровень $\pi^{\text{pasp}}_{x, y}$ при образовании пона O_2^- сопровождается *цвеличением* расстояния до 1,26 Å. В двухзарядном поне O_2^{2-} величина R возрастает еще больше, достигая 1,49 Å. Это согласуется с предсказанным теорией МО числом связей в этих ионах — 11/2 для О2 и 1 для O_{2}^{2-} .

Молекула F₂

Конфигурация атома фтора $2s^22p^5$. Электронная конфигурация молекулы $F_2 (\sigma_s^{c_B})^2 (\sigma_s^{c_B})^2 (\sigma_z^{c_B})^2 (\pi_{x,y}^{c_B})^4 (\pi_{x,y}^{pasp})^4$, что отвечает образованию одной результирующей связи и отсутствию неспаренных электронов. Такая структура согласуется с диамагнетизмом молекулярного фтора, энергией связи, равной 36 *ккал/моль*, и межатомным расстоянием *R* 1.42 Å.

Молекула Ne₂

Неон обладает заполненной электронной оболочкой с конфигурацией $2s^22p^6$. Гипотетическая молекула Ne₂ должна была бы иметь конфигурацию $(\sigma_s^{c_B})^2 (\sigma_s^{p_{33p}})^2 (\sigma_z^{c_B})^2 (\pi_{x, y}^{c_B})^4 (\pi_{x, y}^{p_{33p}})^4 (\sigma_z^{p_{33p}})^2$, соответствующую отсутствию связей. До настоящего времени нет никаких экспериментальных данных, которые указывали бы на возможность существования устойчивой молекулы неона.

2-10. Другие молекулы А2

При обсуждении строения любых молекул типа A₂ можно воспользоваться диаграммой энергетических уровней МО для молекул элементов второго периода периодической системы (рис. 25), изменив соответствующим образом значение квантового числа *n*.

M олекулы Na₂, K₂, Rb₂, Cs₂

Двухатомные молекулы всех щелочных металлов в основном состоящин имеют конфигурацию $(\sigma_s^{cB})^2$ с одной σ -связью. Все они диамагнитны. Межатомные расстояния и энергии связей в молекулах Li₂, Na₂, K₂, Rb₂ и Cs₂ приведены в табл. 7. При переходе от Li₂ к Cs₂ межатомное расстояние равномерно возрастает, а энергия

Таблица 7

Молекула	Межатомное расстояние, Å	Энергия связи, клал'моль
Li ₂	2,672	25
Na ₂	3,078	17,3
K ₂	3,923	11,8
Rb_2		10,8
Cs_2		10,4

Межатомные расстояния и энергии связей в молекулах щелочных металлов ^п

^a Cottrell T. L., The Strengths of Chemical Bonds, Butterworths Scientific Publications, London, 1958, Taöa, 11.5.1.
связи понижается. Эти изменения, по-видимому, связаны с экранированием валентных осев-электронов электронами внутренних слоев, которое возрастает от Li₂ к Cs₂

Молекулы Сl₂, Br₂, I₂

Основное состояние молекул галогенов отвечает кон- $(\sigma_s^{c_B})^2 (\sigma_s^{p_{a_3}p_b})^2 (\sigma_z^{c_B})^2 (\pi_{r, y}^{c_B})^4 (\pi_{x, y}^{p_{a_3}p_b})^4,$ фигурации в которой одна о-связь. Все молекулы днамагнитны. имеется В табл. 8 приведены энергии связей и межатомные расстояния в молекулах хлора, брома и пода. Величина R возрастает от фтора к иоду, однако энергия связи меняется нерегулярно: увеличиваясь от фтора к хлору, при дальнейшем переходе от хлора к иоду она снова умень. шается. Повышенная прочность молекулы хлора по срависнию с молекулой фтора, по-видимому, обусловлена меньшим взаимным отталкиванием электронных пар на π-орбиталях в Cl₂. Существует также мнение, что ослабление отталкивания связано с частичным включением в π-МО пустых атомных 3*d*-орбиталей хлора. В результате такого р_л - d_л-взаимодействия электронные пары распространяются в большем объеме пространства, и их взаимное отталкивание понижается. К такому объясненню можно, однако, и не прибегать, поскольку из спекгроскопических данных известно, что взаимное отталкивание 2р-электронов в атоме фтора значительно сильнее, чем отталкивание Зр-электронов в атоме хлора.

Таблица 8

Межатомное расстоя- ние, Å	Энергия связи, ккал'моль		
1,418	36		
1,988	57,07		
2,283	45,46		
2,667	35,55		
	Межатомное расстоя- ние, Å 1,418 1,988 2,283 2,667		

Межатомные расстояния и энергии связей в молекулах галогенов^а

^a CottrellT.L., The Strengths of Chemical Bonds, Butterworths Scientific Publications, London, 1938, табл. 11.5.1.

2-11. Символы термов линейных молекул

Электронные состояния липейных молекул можно классифилировать по значениям момента количества движения и спина, т. е. по термам, аналогичным термам Расселла — Саундерса для атомов. При выборе системы координат ось двухатомной молекулы принимается за ось z. Атомпые орбитали, из которых образована молекулярная орбиталь, имеют одинаковые значения квантового числа m_l . Таким образом, разным типам МО соответствуют определенные значения m_l (см. табл. 9).

Таблица 9

Обозначения	кван	товых	чисел	MO
в линей	ных	молек	улах	

Молекулярные орбитали	^m l	Атомные орбитали
σ π δ	$egin{array}{c} 0 \ \pm 1 \ \pm 2 \end{array}$	s, p_z, d_{z^2} p_x, p_y, d_{xz}, d_{yz} $d_{xy}, d_{x^2-y^2}$

Термы молекул записываются в виде

 $|^{2S+1}|M_{I}|,$

где S имеет тот же смысл, что и для атомов. Обозначения различных M_L-состояний приведены в табл. 10.

> Tаблица 10Символы состояний и соответствующие им значения M_L в линейных молекулах

Состояние	ML
Σ Π Δ Φ	$ \begin{array}{c} 0 \\ \pm 1 \\ \pm 2 \\ \pm 3 \end{array} $

Разберем процедуру нахождения термов многоэлектронных молекул на двух примерах.

Пример 2-1

Терм основного состояния молекулы H_2 определяем следующим образом.

1. Находим M_L . Два электрона располагаются на σ^{c_B} -МО (см рис. 18), что соответствует конфигурации (σ^{c_B})². Это наиболее устойчивое сосгояние молекулы H_2 МО σ -типа, поэтому для каждого электрона $m_l = 0$. Следовагельно,

$$M_L = m_{l_1} + m_{l_2} = 0 + 0 = 0.$$

Такое состояние обозначается Σ .

2. Находим M_s. Поскольку m_l=0 для обоих электронов, они должны обладать различными значениями m_s (принцип Паули). Таким образом,

$$M_s = m_{s_1} + m_{s_2} = \left(+\frac{1}{2}\right) + \left(-\frac{1}{2}\right) = 0,$$

т. е $M_S = 0$, S = 0 Терм ' представляет собой ' Σ .

На примере молекулы H_2 мы убедились в том, что заполненным молекулярным орбиталям всегда соответствуют значения $M_L = 0$ и $M_S = 0$, так как на любой заполненной орбитали каждому положительному значению m_l соответствует равное ему по абсолютной величине отрицательное значение m_l . Это правило справедливо и в отношении m_s : на заполненных орбиталях всегда находятся пары электронов с противоположными спинами. Это обстоятельство заметно упрощает определение термов многоэлектронных молекул, поскольку значительная часть электронов на различных МО обычно представляятся пары с противоположными спинами.

Пример 2-2

Определим теперь терм основного состояния молекулы O_2 Электронная конфигурация O_2 представляет собой $(\sigma_s^{\rm ccb})^2 (\sigma_z^{\rm cpayp})^2 (\sigma_z^{\rm cb})^2 (\pi_{x,y}^{\rm cc})^4 (\pi_{x,y}^{\rm payp})^2$. Все орбитали, кроме $\pi_{x,y}^{\rm payp}$, за-

^{*} В случае некоторых линейных молекул полное описание терма требует дополнительных обозначений, связанных с типом симметрии молекулярной волновой функции В частности, полный терм основного состояния H_2 представляет собой ${}^{1}\Sigma_{g}^{-}$.Подробное описание этих обозначений приводится в книге Ballhausen C J, Gray H. B, Molecular Orbital Theory, Benjamin, New York, 1964, Chap. 3.

полнены и отвечают значению $M_L = 0$ Два электрона на $\pi_{x,y}^{\text{pagp}}$ -МО можно расположить различными способами, как указано в табл. 11.

Таблица 11

Значения M_L , M_S к примеру 2-2

		MS	
ML	1	0	-1
2		$(\pi_1\pi_1)$	
1			
0	$\left \begin{array}{c} \stackrel{\cdot}{(\pi_1\pi_{-1})}\right $	$(\pi_1\pi_{-1})$	$(\pi_1 \pi_{-1})$
	<u> </u>	$(\pi_1\pi_{-1})$	<u> </u>
1			
2		$\left \begin{array}{c} + & - \\ (\pi_{-1}\pi_{-1}) \end{array} \right $	

Здесь имеется терм с $M_L = +2$, -2 и $M_S = 0$ (S=0). Его символ ¹Δ. Затем имеется терм с $M_L = 0$ и $M_S = +1$, 0, -1 (S=1) Его обозначение ³Σ. Наконец, остается одно микросостояние с $M_L = 0$ и $M_S = 0$ (S=0). Это ¹Σ-терм

Основное состояние может представлять собой ${}^{1}\Delta$, ${}^{3}\Sigma$ или ${}^{1}\Sigma$. В соответствии с первым правилом Гунда основное состояние должно иметь наибольшую мультиплетность спина. Следовательно, основным состоянием является ${}^{3}\Sigma$. Это состояние отвечает наличию двух неспаренных электронов. Как уже упоминалось ранее, такое предсказание на основании теории МО хорошо согласуется с результатами магнитных измерений, согласно которым молекула O₂ парамагнитна, и величина ее парамагнетизма соответствует двум неспаренным электронам (S=1). Спектроскопические данные также указывают на то, что основное состояние молекулы O₂ отвечает терму ${}^{3}\Sigma$.

В табл. 12 перечислены термы основных состояний и некоторые другие характеристики различных гомонуклеарных молекул.

Таблица 12

Свойства гомонуклеарных двухатомных молекул а

Молекула	Основное состояние	Межатомное расстояние, Å	Энергия связи, ккал/моль
Ag_2	1Σ?		39
As_2	Σ^1		91
Au_2	¹ Σ?		52
\mathbf{B}_2	3Σ	1,589	69
Bi_2	$^{1}\Sigma$		39,2
Br_2	1Σ	2,283	45,46
C_2	¹ Σ (³ Π) ^δ	1,3117	150
Cd_2	12.5		2,1
C1 ₂	12	1,988	57,07
Cl_2^{\perp}	² П	1,891	
Cs_2	ıΣ		10,4
	1∑		47
D_2	1Σ	0,7416	
\mathbf{F}_2	1Σ	1,418	36
Ga_2			35
Ge_2			65
H_2	۱ <u>Σ</u>	0,7415	103,24
H_2^+	2∑	1,06	61,06
${\sf He}_2^+$	2∑	1,08	
Hg_2	1Σ		3,2
I ₂	ıΣ	2,6666	35,55
K ₂	ıΣ	3,923	11,8
Li2	۱ _Σ	2,672	25
N_2	1Σ	1,0976	225,0
N_2^+	2Σ	1,116	
Na_2	۱ <u>Σ</u>	3,078	17,3
O_2	3∑	1,20741	117,96
O_2^+	2∏	1,1227	
O_2^-	211 ?	1,26	
O_2^{2-}	¹ Σ ?	1,49	
P_2	$^{1}\Sigma$	1,8943	116,0

Молекула	Основное состояние	Межатомное расстояние, Å	Энергия связи, кка.1/мо.1ь
Pb,			23
Rb,	12		10,8
S_2	3∑	1,887	83
Sb_2	1 \S_		69
Se_2	3∑	2,152	65
Si ₂		2,252	75
Sn_2			46
Te_2		2,59	53
Zn_2	12 ?		6

Продолжение табл. 12

а Герцберг Г., Сцектры двухатомных молекул, Издатинлит, 1954, табл 39, СоttreliT.L., The Strengths of Chemical Bonds, Butterworths Scientifle Publications, London, 1958, табл. 11.5.1; Sutton L.E., Ed., Interatomic Distances, Special Publication № 11, The Chemical Society, London, 1958.

 6 Краткое обсуждение основного состояния молекулы С₂ можно найти в книге L i n n e t J. W., Wave Mechanics and Valency, Methuen, London, 1960, p. 134.

2-12. Гетеронуклеарные двухатомные молекулы

Двухатомные молекулы, состоящие из атомов разных элементов, называются *гетеронуклеарными*. В качестве примера рассмотрим молекулу гидрида лития LiH.

Валентные орбитали лития 2s, $2p_x$, $2p_y$ и $2p_z$, валентная орбиталь водорода 1s. На рис. 27 показано перекрывание 1s-орбитали атома водорода с 2s-, $2p_x$ -, $2p_y$ и $2p_z$ -орбиталями атома лития. Прежде всего определим типы молекулярных орбиталей. 1s-Орбиталь H и 2s- и $2p_z$ -орбитали Li являются валентными σ -орбиталями. Таким образом, для образования MO можно использовать комбинации атомных 2s- и $2p_z$ -орбиталей лития с Is-орбиталью водорода. Орбитали $2p_x$ и $2p_y$ лития являются валентными π -орбиталями, и они не могут взаимодействовать с Is-орбиталью атома водорода, принадлежащей к σ -типу. Перекрывание между этими орбиталями, как видио из рис. 27, равно нулю.

Рассмотрим систему σ -МО подробнее 2s-Уровень Li более устойчив, чем 2p, поэтому можно полагать, что σ^{св}-МО образуется главным образом за счет 1s-орбитали атома водорода и 2s-орбитали атома лития.

Важно также отметить, что 1s-орбиталь водорода значительно более устойчива, чем 2s-орбиталь лития.

Рис. 27. Перекрывание 1s-орбитали агома водорода с валентными орбиталями атома лития.

В свободных атомах разность энергий этих уровней очень велика, так как первый потенциал иопизации лития ($1s^22s \rightarrow 1s^2$) равен 5,4 эв, а водорода 13,6 эв. Вследствие значительно большей устойчивости 1s-орбитали водорода электрон, находящийся на σ^{cb} -MO, будет проводить бо́льшую часть своего времени вблизи атома водорода.

σ^{св}-Орбиталь изображена на рис. 28. Аналитически эту орбиталь можно представить следующим образом:

$$\psi(\sigma^{CB}) = C_1 2s + C_2 2p_z + C_3 1s.$$
(77)

В данном случае $C_3 > C_1 > C_2$, а числовые значения этих коэффициентов ограничены условием нормировки [уравнение (46)].

Вследствие того, что в образовании МО могут участвовать и 2s-, и $2p_z$ -орбитали атома Li, должны существовать два разрыхляющих $\sigma^{\text{разр}}$ -уровня: один за счет 2s, другой за счет $2p_z$. Обе $\sigma^{\text{разр}}$ -орбитали располагаются в

Рис. 28. Граничная поверхность связывающей о-МО в молекуле LiH.

Рис. 29. Граничные поверхности $\sigma_s^{\text{разр}}$ -и $\sigma_z^{\text{разр}}$ -МО в молекуле LiH.

основном вблизи атома Li, как показано на рис. 29. Их приближенные волновые функции следующие:

$$\psi(\sigma_s^{\text{pasp}}) = C_4 2s - C_5 1s, \quad C_4 > C_5, \tag{78}$$

$$\psi(\sigma_z^{\text{pasp}}) = C_6 2 p_z - C_7 1 s, \ C_6 > C_7.$$
(79)

6 Г. Грей

2-13. Схема энергетических уровней МО гидрида лития LiH

Такая схема изображена на рис. 30. В левой части диаграммы находятся валентные орбитали атома лития, причем 2*p*-уровень расположен выше 2*s*-уровня. Справа

Рис. 30 Энергетические уровни орбиталей молекулы LiH.

показан 1s-уровень атома водорода, который лежит ниже 2s-уровня Li в соответствни с разностью их эпергий.

В середние диаграммы находятся уровни σ^{e_B} и $\sigma^{pa_{3p_{-}}}$ МО. σ^{e_B} -Орбиталь несколько более устойчива, чем атомная 1s-орбиталь Н. На диаграмме ясно видно, что эта MO образуется в основном за счет 1s-орбитали. Участие в ней 2s- и 2p_z-орбиталей значительно меньше. $\sigma_s^{pa_{3p}}$ -MO менее устойчива, чем валентная 2s-орбиталь Li. Она образована из 2s-орбитали лития и 1s-орбитали водорода, причем главным образом за счет 2s-орбитали атома лития $\sigma_z^{\text{разр}}$ -Орбиталь менее устойчива, чем $2p_z$, и она имеет заметно выраженный $2p_z$ -характер.

Уровень атомных $2p_x$ - и $2p_y$ -орбиталей Li совпадает с уровнем МО л-типа. В атоме H нет валентных орбиталей, способных участвовать в образовании л-орбиталей, поэтому такие орбитали могут образоваться только за счет $2p_x$ - и $2p_y$ -орбиталей лития.

2-14. Основное состояние LiH

Связь в молекуле LiH образуется за счет двух электронов: одного валентного электрона водорода (1s) и одного валентного электрона атома лития (2s). Разместим эти электроны на MO, пользуясь диаграммой энергетических уровней (рнс. 30). Расположив оба электрона на осв-MO, получаем основное состояние с конфигурацией

$$(\sigma^{\rm CB})^2 = {}^1\Sigma.$$

Оба электрона на σ^{св}-МО проводят в области ядра атома водорода значительно большую часть времени, чем в области ядра атома лития, вследствие чего центры тяжести положительных и отрицательных зарядов молекулы в основном состоянии не совпадают. Поэгому на Li возникает частичный положительный, а на H — частичный отрицательный заряд:

В предельном случае, если бы оба электрона постоянно находились только вблизи атома H, молекула превратилась бы в два иона, Li⁻ и H⁻, при этом $\delta = 1$. Такие молекулы называются ионными. Ионные двухатомные молекулы образуются только в том случае, если валентная орбиталь одного атома значительно устойчивее валентной орбитали другого атома. Вероятно, молекула LiH не принадлежит к такому предельному типу молекул, и она имеет лишь частично ионный характер. Степень ионности можно определить, вычислив коэффициенты C_1 , C_2 и C_3 в уравнении (77). К сожалению, такой расчет слишком сложен, чтобы его можно было привести

6*

в настоящей книге. По данным одного из таких расчетов, распределение зарядов таково:

 $Li^{0,8+}H^{0,8-}$,

т. е. связь в молекуле LiH на 80% имеет ионный характер.

2-15. Дипольные моменты

Разделение зарядов в основном состоянии гетеронуклеарных двухатомных молекул типа LiH обусловливает наличие в них электрического дипольного момента. Дипольный момент равен произведению заряда на расстояние между центрами тяжести положительного и отрицательного зарядов:

Дипольный момент
$$= \mu = eR.$$
 (80)

Обычно *R* выражают в сантиметрах, а *е* — в электростатических единицах (эл. ст. ед.); тогда µ выражается также в эл. ст. ед. Заряд электрона равен 4,8× ×10⁻¹⁰ эл. ст ед., а расстояния — порядка 10⁻⁸ *см* (1 Å). Дипольный момент — величина порядка 10⁻¹⁸ эл. ст. ед. Удобно выражать дипольный момент в единицах Дебая (*D*), так как 1*D* = 10⁻¹⁸ эл. ст. ед. Если в качестве первого приближения принять, что центры тяжести разделенных зарядов совпадают с ядрами, то вместо *R* в уравнение (80) можно просто подставить межатомное расстояние, или длину связи в молекуле.

Поскольку дипольные моменты определяют экспериментально, ионный характер связи в гетеронуклеарных двухатомных молекулах можно оценить количественно. Дипольный момент LiH равен 5,9 единиц Дебая (5,9 D). Поскольку R = 1,60 Å (т. е. $1,60 \cdot 10^{-8}$ см), для чисто ионной структуры дипольный момент должен быть равен 7,7 D. Таким образом, частичный заряд на ядрах будет приблизительно 0,77, т. е. связь в молекуле LiH на 77 % ионная. Эта величина хорошо согласуется со значением, вычисленным теоретически и приведенным в конце предыдущего раздела (80%). В табл. 13 приводятся дипольные моменты некоторых двухатомных молекул.

Таблица 13

двухатомных молекул					
Молекула	Дипольный момент, D				
LiH	5,88				
HF	1,82				
HC1	1,07				
HBr	0,79				
HI	0,38				
O_2	0				
CŌ	0,12				
NO	0,15				
IC1	0,65				
BrCl	0,57				
FC1	0,88				
FBr	1,29				
KF	8,60				
KI	9.24				

Дипольные моменты некоторых двухатомных молекул^а

^a M c C i e I l a n A. L , Tables of Experimental Dipole Moments, Freeman, San Francisco, 1963.

2-16. Электроотрицательность

Если валентная орбиталь одного атома более устойчива, чем валентная орбиталь другого атома двухатомной молекулы, то такую орбиталь называют более электроотрицательной. Полезное понятие электроотрицательности ввел в 30-х годах американский химик Лайнус Полинг. В широком смысле электроотрицательность можно определить как способность атома в молекуле притягивать к себе электроны. Однако можно полагать, что различные атомные орбитали обладают различной электроотрицательностью, и, следовательно, электроотрицательность атома может быть различной в зависимости от того, какие орбитали участвуют в образовании связи. Далее, электроотрицательность атома в молекуле обычно тем выше, чем больше положительный заряд на данном атоме в молекуле.

Значения электроотрицательности по Полингу определяются путем сравнения энергии диссоциации различных молекул, содержащих данный атом. Эпергия диссоциации (D) молекулы LiH составляет 58, для Li₂ 25 и для H₂ 103 *ккал/моль*. Мы знаем, что связи в молекулах Li₂ и H₂ относятся к разряду чисто ковалентных связей, т. е. в обеих молекулах электроны на σ^{cB} -уровнях принадлежат в равной мере обонм атомам. Если бы связь в LiH была чисто ковалентной, то величина D_{LH} определялась бы как среднее геометрическое из D_{H_2} и D_{LL} :

$$D_{\mathrm{LiH}} \stackrel{?}{=} \sqrt{\tilde{D}_{\mathrm{H}_2} \cdot D_{\mathrm{Li}_2}} \,. \tag{81}$$

Среднее геометрическое составляет только 51 ккал/моль, на 7 ккал/моль меньше истинного значения D_{Liff} . Этот результат является следствием общего правила, что энергия диссоциации молекулы AB почти всегда больше, чем среднее геометрическое из эпергии диссоциации молекул A₂ и B₂. Еще более ярким примером является молекула BF. Энергии диссоциации для B₂, F₂ и BF равны соответственно 69, 36 и 195 ккал/моль. Среднее геометрическое равно:

$$D_{\rm BF} \stackrel{\circ}{=} \sqrt{69 \cdot 36} = 50 \neq 195. \tag{82}$$

«Избыточная» энергия связи в молекуле AB, по-видимому, обусловлена электростатическим притяжением между частично ионизированными формами A и B:

$$A^{\delta +}B^{\delta -}$$
.

Полинг назвал эту «избыточную» энергию связи в молекуле с частично ионным характером ионной энергией резонанса. Обозначив ее Δ , получаем выражение

$$\Delta = D_{\rm AB} - \sqrt{D_{\rm A_2} \cdot D_{\rm B_2}}.$$
(83)

Разность электроотрицательностей двух атомов, А н В, определяется как

$$\chi_{\rm A} - \chi_{\rm B} = 0.208 \, \sqrt{\Delta}, \qquad (84)$$

Габлица 14

							- F									
I	11	111	11	11	II	11	11	11	11	ł	[]	[]]	١V	111	11	ſ
11 2,20																
L1 0,98	Be 1,57											В 2,04	C 2,55	N 3,04	0 3,44	F 3,98
Na 0,93	Mg 1,31											A1 1,61	Si 1,90	Р 2,19	S 2,58	C1 3,16
K 0,82	Ca 1,00	Sc 1,36	T1 1,54	V 1,63	Cr 1,66	Mn 1,55	Fe 1,83	Co 1,88	Ni 1,91	Cu 1,90	Zn 1,65	Ga 1,81	Ge 2,01	As 2,18	Se 2,55	В г 2,96
Rb 0,82	Sr 0,95	Y 1,22	Zr 1,33		Mo 2,16			Rh 2,28	Pd 2,20	Ag 1,93	Cd 1,69	In 1,78	Sn 1,96	Sb 2,05		1 2,66
Cs 0,79	Ba 0,89	La 1,10			W 2,36			Ir 2,20	Pt 2,28	Au 2,54	Hg 2,00	T1 2,04	Pb 2,33	Bi 2,02	4 1	
		Ce 1,12	Pr 1,13 (III)	Nd 1,14 (III)		Sm 1,17 (III)		Gd 1,20 (III)		Dy 1,22 (III)	Ho 1,23 (III)	Er 1,24	Tu 1,25 (III)		Lu 1,27 (III)	
					U 1,38 (III)	Np 1,36 (III)	Pu 1,28 (III)									

^а Allred A. L., J. Inorg. Nucl. Chem, **17**, 215 (1961). Римские цифры обозначают состояние окисления атома в молекулах, использованных для расчета электроотрицательности где χ_{Λ} и χ_{B} — значения электроотрицательности атомов А и В, а коэффициент 0,208 позволяет выразить электроотрицательность в электроновольтах, если энергии диссоциации выражены в *ккал/моль*. Для того чтобы значения электроотрицательности для различных атомов в выбранной шкале менялись в не слишком широком интервале, используется квадратный корень из Δ , а не сами значения Δ . Поскольку с помощью уравнения (84) можно определить лишь разность электроотрицательностей атомов, электроотрицательность какого-то одного атома должна быть выбрана произвольно в качестве начала отсчета. По шкале Полнига наиболее электроотрицательному элементу фтору приписана величина электроотрицательности (ЭО), равная 4. В табл. 14 приведены наиболее современные значения ЭО атомов, вычисленные по методу Полинга.

Американский физик Р. С. Малликен предложил другой метод оценки ЭО. По Малликену, ЭО определяется как среднее арифметическое из погенциала нопизации и сродства к электрону для дашного атома, т. е.

$$\Im O = \frac{\Pi M + \Im C}{2}.$$
 (85)

Уравнение (85) позволяет одновременно учитывать способность атома удерживать свой валентный электрон и способность приобретать избыточный электрон. Разумеется, значения ЭО, вычисленные по уравнению (85), численно отличаются от значений, определенных по методу Полинга, однако, если принять для фтора величину ЭО, равную 4, и соответственно пересчитать ЭО для остальных элементов, то между обенми шкалами наблюдается хорошее согласие *.

2-17. Ионная связь

Рассмотрим предельный случай неравномерного распределения заряда электронной пары на МО, когда электроотрицательность одного из атомов очень велика,

^{*} Не надо, однако, забывать, что обе шкалы выражены в разтичных единицах измерения.

а второй атом обладает очень низким потенциалом ионизации (соответственно и малой ЭО). В таком случае электрон, первоначально принадлежавший атому с низким значением ПИ, практически полностью переходит к атому с высокой ЭО:

$$M \cdot + X \cdot \to M^+ : X^- \tag{86}$$

Связь в молекуле, в которой электрон почти полностью переходит к одному из атомов, называется *ионной*. Примером такой ионной двухатомпой молекулы может служить молекула фтористого лития LiF, которую в довольно хорошем приближении можно описать структурой Li⁺F⁻. Энергия, необходимая для полного разделения ионов в двухатомной моле-

$$A^{q} + B^{q}$$

Рис. 31. Диссоциация понной молекулы на ноны.

куле (рис. 31), определяется с помощью следующего соотношения:

Потенциальная энергия = Электростатическая энергия +

+Энергия вандерваальсова взаимодействия.

Энергия электростатического притяжения между ионами равна

$$\frac{q_1q_2e^2}{R},\tag{87}$$

где q_1 и q_2 — частичные заряды на атомах М и Х, а R — межатомное расстояние.

Энергия вандерваальсова взаимодействия состоит из двух частей. Наиболее существенной частью является энергия взаимного отталкивания между электронами заполненных орбиталей взаимодействующих атомов, которое проявляется на сравнительно коротких расстояниях. Такое взаимное отталкивание электронных пар иллюстрировано рис. 32. Мы уже раньше упоминали о взаимном отталкивании заполненных внутренних орбиталей при сравнении энергии связей в H₂ и Li₂. Для силы отталкивания обычно используется аналитическое выражение

Вандерваальсово отталкивание $= be^{-aR}$, (88)

где *а* и *b* — постоянные величины для каждой конкретной системы. Заметим, что при больших значениях *R* сила отталкивания становится очень малой.

Вторая часть вандерваальсовой энергии представляет собой энергию притяжения. Такое притяжение

Рис. 32. Взанмное отталкивание электронов на заполиенных орбиталях Такое отталкивание особенно велико, когда заполненные орбитали перекрываются (вспомните принцип Паули). Рис. 33 Схема взаимодействия между *мгновенными наведенными диполями*, привоцящего к слабому притяжению (лондоновские дисперсионные силы).

имеет место в случае, когда электроны на занятых орбиталях двух различных атомов перемещаются согласованно, по возможности избегая встречи на близком расстоянии. Например, электроны на орбиталях атомов М и Х могут согласовать свое движение таким образом, как это изображено на рис. 33. При этом возникают мгновенные наведенные диполи, между которыми действуют силы взаимного притяжения. Потенциальная энергия такого притяжения известна как дисперсионная энергия Лондона, величина которой определяется выражением

Энергия Лондона =
$$-\frac{d}{R^6}$$
, (89)

где d — постоянная величина, характерная для данной системы. Энергия дисперсионного притяжения убывает обратно пропорционально расстоянию в шестой степени. Тем не менее такое убывание с ростом R происходит медлениее, чем убывание отталкивания по закону be^{-aR} . Таким образом, на достаточно больших расстояниях силы Лондона обеспечивают больший вклад в величину вандерваальсова взаимодействия, чем силы отталкивания.

2-18. Простая ионная модель галогенидов щелочных металлов

Полную величниу потенциальной эпергии ионной молекулы галогенида щелочного металла можно представить следующим образом:

$$\Pi \Im = -\frac{q_1 q_2 e^2}{R} + b e^{-aR} - \frac{d}{R^6}.$$
 (90)

Для вычисления потенциальной энергии по уравнению (90) нужно знать значения констант a, b и d. Точные значения этих констант для ионов щелочных металлов и галогенов неизвестны. Однако ионы как щелочных металлов, так и галогенов имеют электронную конфигурацию инертных газов. Например, если рассматривать LiF как ионную молекулу, то ион Li⁺ изоэлектронен с инертным газом гелием, а F^- — с неоном. Таким образом, вандерваальсово взаимодействие в LiF можно принять примерно равным ваидерваальсову взаимодействию между атомами инертных газов — гелия и неона. Такая приближенная оценка с помощью пар инертных газов, разумеется, применима и к другим молекулам галогенидов шелочных металлов.

Вандерваальсово взаимодействие между атомами инертных газов поддается измерению, благодаря чему можно получить константы *a*, *b* и *d*. Эти значения приведены в табл. 15 Вычислив по уравнению (90) потенциальную энергию, мы можем теперь определить энер гию связи в LiF.

91

Таблица 15

Пара взаимотействующих атомов	а	b	d
He—He He—Ne He—Ar He—Kr He—Xe Ne—Ne Ne—Ar Ne—Kr	2,10 2,27 2,01 1,85 1,83 2,44 2,18 2,02	6,55 33 47,9 26,1 42,4 167,1 242 132	2,39 4,65 15,5 21,85 33,95 9,09 30,6 42,5
Ne-Xe Ar-Ar Ar-Kr Ar-Xe Kr-Kr Kr-Xe Xe-Xe	$2,00 \\ 1,92 \\ 1,76 \\ 1,74 \\ 1,61 \\ 1,58 \\ 1,55$	214 350 191 310 104 169 274	$ \begin{array}{r} 66,1\\ 103,0\\ 143,7\\ 222,1\\ 200\\ 310\\ 480\\ \end{array} $

Энергетические параметры вандерваальсова взаимодействия между атомами инертных газов а

^а Все значения параметров приведены в атомных единицах. Данные из статьи Mason E. A., J. Chem. Phys., 23, 49 (1955).

Пример

Для вычисления энергии связи сначала вычислим энергию диссоциации молекулы LiF на ноны.

$$LiF \rightarrow Li^+ + F^-$$
.

Вычислим эту энергию в атомных единицах (ae). За атомную единицу длины принят боровский раднус a_0 , или 0,529 А. Атомная еди-ница заряда равна заряду электрона. Константы a, b и d приведены в табл. 15 в атомных единицах. Наконец, атомная единица энергии равна 27,21 *эв* Межатомное расстояние в LiF равно 1,52 A, что со-сгавляет 1,52/0,529=2,88 *ае.* Для Li⁺F⁻ $q_1=q_2=1$ *ае*, а $e^2=1$ *ае.* При подстановке этих значений в уравнение (90) получаем

$$\Pi \Im = -\frac{1}{2,88} + 33e^{(-2,27)(2,88)} - \frac{4,65}{(2,88)^6}$$

или

$$\Pi \Theta = -0,347 + 33 \ (0,00144) - \frac{4,65}{571}$$

или

$$\Pi \Im = -0.308 \ ae = -8.38 \ \Im e.$$

В соответствии с этим энергия, необходимая для отдаления Li⁺ от F⁻, составляет 8,38 эв. Эта энергия называется координатной энергией связи. Но нам необходимо вычислить стандартную энергию диссоциации на атомы, относящуюся к процессу

$$LiF \xrightarrow{D} Li + F.$$

Для этого необходимо отнять электрон от иона F^- и присоединить его к иону Li*:

$$\operatorname{LiF} \xrightarrow{8,38 \ 98} \operatorname{Li}^+ + \operatorname{F}^- \qquad \xrightarrow{-\prod \mathcal{U}_1(\operatorname{Li})} + \operatorname{G}(\operatorname{F}) \xrightarrow{} \operatorname{Li} + \operatorname{F}.$$

Очевидно, что энергию D можно вычислить по уравнению

 $D = -\Pi \Im - \Pi H_1 + \Im C.$

Поскольку ПИ₁ (Li) = 5,39 *эв*, а $\Im C(F) = 3,45$ *эв*, окончательно получаем

$$D_{\text{LIF}} = 8,38 - 5,39 + 3,45 = 6,44$$
 38.

Полученная величина D=6,45 эв, или 149 ккал/моль, довольно хорошо согласуется с экспериментальным значением D=137 ккал/моль.

Экспериментальные значения энергии связи и межатомного расстояния в молекулах галогенидов щелочных металлов приведены в табл. 16. Связь в этих молекулах наиболее близка к типу чисто ионной связи, поскольку атомы щелочных металлов имеют наименьшие значения ПИ, а у атомов галогенов весьма высокие ЭС. Наиболее полный перенос электрона ожидается в случае CsF и минимальный — в молекуле Lil. Связь в молекуле Lil должна быть в значительной степени ковалентной.

Таблица 16

Молекула	Молекула Межатомное расстояние, Â	
CsF	2.345	121
CsC1	2.906	101
CsBr	3,072	91
CsI	3,315	75
KF	2,139 6	118
KC1	2,667	101
KBr	2,821	91
KI	3,048	77
LiF	1,520 6	137
LiC1	2,029 6	115
LiBr	2,170	101
Lil	2,392	81
NaF	1,846 6	107
NaC1	2,361	98
NaBr	2,502	88
NaI	2,712	71
RbF	2,242 6	119
RbC1	2,787	102
RbBr	2,945	90
RbI	3,177	77
RbI	3,177	90

Характеристики связей в молекулах галогенидов шелочных металлов^а

^а Терм основного состояния ¹Σ. Данные из книги Соttrell T. L., The Strengths of Chemical Bonds, Butterworths Scientific Publications, London, 1958, табл. 11.5.1.

6 Приблизительные значения; см Рац IIng L. The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, N. Y., 1960, p. 532.

2-19. Общий случай молекулы АВ

Рассмотрим связь в любой двухатомной молекуле типа АВ при условни, что атом В более электроотрицателен, чем А, и что у обоих атомов имеются валентные *s*- и *p*-орбитали. Энергетические уровни молекулярных орбиталей для АВ показаны на рис. 34. В соответствии с различной электроотрицательностью атомов A и B s- и p-орбитали атома B расположены ниже s- и p-орбиталей атома A. Связывающие и разрыхляющие σ- и л-MO образуются в AB таким же образом, как и в моле-

Р н.с. 34. Энергетические уровни орбиталей молекулы АВ. Атом В более электроотрицателен, чем атом А.

кулах типа A₂, с той лишь разницей, что вклад атомных орбиталей В в связывающие МО больше, а в разрыхляющие МО меньше, чем вклад орбиталей атома A. Это означает, что электроны на связывающих МО проводят бо́льшую часть времени вблизи более электроотрицательного атома В. Находясь на малоустойчивой

разрыхляющей МО, они должны проводить бо́льшую часть времени в области менее электроотрицательного

πу эквивалентны π_x

Рис. 35. Граничные поверхности МО молекулы AB. Атом В более электроотрицателен, чем атом А.

атома А. На рис. 35 изображены граничные поверхности молекулярных орбиталей молекулы АВ.

Молекула BN (8 валентных электронов)

Электронная конфигурация основного состояния молекулы ВN представляет собой $(\sigma_s^{_{CB}})^2 (\sigma_s^{_{Pasp}})^2 (\pi_{x, y}^{_{CB}})^3 (\sigma_z^{_{CB}})$, что отвечает терму ³П и формальному образованию двух связей ($\frac{1}{2}\sigma$, $\frac{3}{2}\pi$). Таким образом, молекула BN в смысле элекгронного строения аналогична молекуле C_2 . Межатомные расстояния в C_2 и ВN составляют соответственно 1,31 и 1,28 Å. Энергия связи в ВN (92 ккал/моль) меньше, чем в C_2 (150 ккал/моль).

Молекулы ВО, СN, СО+ (9 валентных электронов)

Конфигурация основного состояния всех трех молекул представляет собой $(\sigma_s^{\rm cn})^2 (\sigma_s^{\rm paap})^2 (\pi_{x,y}^{\rm cB})^4 (\sigma_z^{\rm cB})$, что соответствует терму ² Σ . Формально в молекулах 2¹/₂ связи, т. е. на ¹/₂ связи меньше, чем в ВN. Межатомные расстояния короче, чем в ВN (или в C₂) и составляют 1,20 Å в ВО, 1,17 Å в СN и 1,115 Å в СО⁺. Энергии связи выше, чем в ВN : 185 ккал/моль для ВО и 188 ккал/моль для СN.

Молекулы СО, NO⁺, CN⁻ (10 валентных электронов)

Все три молекулы изоэлектронны молекуле N₂, и их основное состояние описывается термом ¹Σ. Конфигурация $(\sigma_s^{cB})^2 (\sigma_s^{paap})^2 (\pi_{x,y}^{cB})^1 (\sigma_z^{cB})^2$ отвечает формальному образованию одной σ- и двух л-связей. Межатомные расстояния возрастают в ряду NO⁺ <CO <CN⁻ и составляют соответствению 1,062, 1,128 и 1,14 Å. По сравнению с молекулами предыдущего типа межатомные расстояния в молекулах с 10 валентными электронами с тем же зарядом, как и следовало ожидать, короче. Энергия связи в молекуле CO составляет 255,8 ккал/моль, что даже превышает энергию связи в молекуле N₂ (225 ккал/моль).

Молекула NO (11 валентных электронов)

Основное состояние молекулы NO описывается термом ²П и имеет конфигурацию $(\sigma_s^{cb})^2 (\sigma_s^{pa3p})^2 (\pi_{x,y}^{cb})^1 (\sigma_z^{cb})^2 (\pi_{x,y}^{pa3p})$. Поскольку одиннадцатый электрон находится на разрыхляющей π^{pa3p} -MO, формальное число связей на 1/2меньше, чем в NO⁺, и составляет только $2^{1}/_{2}$. Межатомное расстояние равно 1,15 Å, т. е. больше, чем в случае СО и NO⁺. Энергия связи в NO равна 162 *ккал/моль*, что значительно ниже энергии связи в молекуле CO.

Характеристики связей некоторых гетеронуклеарных молекул приводятся в табл. 17.

7 Г. Грей

Таблица 17

Свойства гетеронуклеарных двухатомных молекул а

Молекула	Основное состояние	Межатомное расстояние, Å	Энергия связи, ккалімоль
AIBr AICI AIF AIII AII AIO AsN AsO BBr BCI BF BH BN BO BaO BeCI BeF BeH BeO BrCI BrF BrH BrH+ CF CH CN CN CN CN CO	$\begin{vmatrix} i \sum \\ 2 \sum \\ i \sum \\ 2 \sum \\ i \sum \\ 1 \sum \\ 2 $	$\begin{array}{c} 2,295\\ 2,13\\ 1,65\\ 1,6482\\ 1,6176\\ \end{array}$ $\begin{array}{c} 1,88\\ 1,715\\ 1,262\\ 1,2325\\ 1,281\\ 1,2049\\ 1,940\\ 1,7\\ 1,3614\\ 1,3431\\ 1,3308\\ 2,138\\ 1,7555\\ 1,408\\ 1,459\\ 1,270\\ 1,1198\\ 1,1718\\ 1,1727\\ 1,14\\ 1,1927\\ 1,$	$\begin{array}{c} 99\\ 99\\ 118\\ 158\\ 67\\ 90\\ 138\\ 115\\ 113\\ 97\\ 117\\ 195\\ 70\\ 92\\ 185\\ 130\\ 69\\ 92\\ 53\\ 124\\ 52,1\\ 55\\ 66,5\\ 106\\ 80\\ 188\\ 255 8\end{array}$
CO ⁺ CP CS CSe CaO CIF	$\begin{array}{c} 2\Sigma \\ 2\Sigma \\ 1\Sigma \\ 1\Sigma \\ 1\Sigma \\ 1\Sigma \\ 1\Sigma \\ 1\Sigma \end{array}$	$1,1151 \\ 1,562 \\ 1,5349 \\ 1,66 \\ 1,822 \\ 1,6281$	138 166 115 100 60,5

Молекула	Основное состояние	Межатомное расстояние, Å	Энергия связи ккал моль
CsH	ıΣ	2.494	42
GaC1	īΣ	2.208	115
GaF	12	1.775	142
GeO	ıΣ	1.650	157
HCI	1Σ	1,2744	102.2
HC1 ⁺	211	1,3153	,
HD	ıΣ	0,7413	
HF	1∑	0,9175	134
HI	۱ <u>Σ</u>	1,608	70,5
HS	2∏	1,3503	80
IBr	۱ _Σ	,	41,90
IC1	1∑	2,32070	49,63
IF	١ <u>Σ</u>	1,985	46
InBr	1Σ	2,5408	85
InCl	1∑	2,4012	104
InF	12	1,9847	125
InH	15	1,8376	57
InI	$^{1}\Sigma$	2,86	65
КН	$^{1}\Sigma$	2,244	43
LiH	¹ Σ	1,5953	58
MgO	1∑	1,749	92
NH	8Σ	1,038	85
NH ⁺	211	1,084	
NO	211 2	1,150	162
NO ⁺	١Σ	1,0619	
NP	1 ∑	1,4910	
NS	2∏	1,495	115
NST		1,25	
Nall	1Σ	1,8873	47
NaK	1Σ		14,3
NaRb	1Σ	0.0700	13,1
OH	211	0,9706	101,5
OHT	3∑	1,0289	
PH	3Σ	1,4328	
PN	$^{1}\Sigma$	1,4910	138

Продолжение табл. 17

Глава П

Молеку 1а	Основное состояние	Межатомное расстояние, Å	Энергия связи, ккал/моль
PO	211	1,448	125
РbН	² 11	1,839	42
РЬО	īΣ	1,922	94
PbS	īΣ	2,3948	75
RbH	1Σ	2,367	39
SO	<u>3∑</u>	1,4933	119
SbO	2][74
SiF	2]]	1,603	88
SiH	51L	1,520	74
SiN	² <u>></u>	1,572	104
SiO	12	1,509	185
SiS	tΣ	1,929	148
SnH	² 11	1,785	74
SnO	1 2	1,838	132
SuS	12	2,66	110
SrO	1 <u>></u>	1,920	83
TlBr	1 <u>></u>	2,6181	78
TICI	$^{1}\Sigma$	2,4848	87
TIF	1 2	2,0844	109
TIH	¹ Σ	1,870	46
TII	12	2,8136	65

Продолжсние табл. 17

^а ГерцбергГ, Спектры двухатомных молекул, Издатинлит, 1953, табл. 39; Cottrell T. L., The Strengths of Chemical Bonds, Butterworths Scientific Publications, London, 1958, табл. 1151; Sutton L. E., Ed., Interatomic Distances, Special Publication, № 11, The Chemical Society, London, 1958.

Дополнительные упражнения

1. Найдите терм основного состояния для а) B_2 ; б) F_2 ; в) C_2 ; г) S_2 .

2. Проанализируйте характеристики связей в молекулах N₂, P₂, As₂, Sb₂ и Bi₂ на основании их электронных конфигураций.

3. Проанализируйте характеристики связей в молекулах Cl₂ и Cl₂ на основе теории MO, 4. Вычислите энергии связи в следующих молекулах: а) CsF; б) CsBr; в) NaI; г) KCl. Сравните полученные результаты с экспериментальными значениями, привсденными в табл. 16.

5. Определите термы основного состояния для BeF и BeO. Вычислите энергию связи в молекуле BeO, считая связь чисто ионной.

6. Проанализируйте характеристики связей в двухатомных молекулах межгалондных соединений CIF, BrCl, ICl, IBr и т. д.

7. Проанализируйте характеристики связей в NO, PO, AsO и SbO.

8. Опишите образование связей в молекулах галогеноводородов (HF, HCl, HBr и HI) с помощью теории МО. Проанализируйте характеристики связей в этих молекулах.

ЛИНЕЙНЫЕ ТРЕХАТОМНЫЕ МОЛЕКУЛЫ

3-1. Молекула ВеН₂

Рассмотрим молекулярные орбитали ВеН₂, очень простой линейной трехатомной молекулы. Как и в случае двухатомных молекул, примем ось симметрии молекулы (линию, соединяющую все три атома) за ось z, как показано на рис. 36. Атом бериллия имеет валентные 2s- и 2p-орбитали, атом водорода — валентную 1s-орбиталь. МО в молекуле BeH₂ образуются за счет 2s- и 2p₂-орбиталей Ве и 1s-орбиталей Н_a и H_b путем составления их линейных комбинаций. При этом атомным 1sa- и 1sb-орбиталям приписывается тот же знак (+ или -), который имеет перекрывающаяся с ними часть 2s-, 2p2-функции. В результате образуются связывающие МО, для которых плотность электронного облака повышена в области между ядрами. Поскольку 2s-орбиталь не меняет знака по всей граничной поверхности, в выражение для связывающей MO с ее участием должна входить сумма $(1s_a + 1s_b)$ (см. рис. 37). $2p_z$ -Орбиталь имеет две области с противоположными знаками, и для образования связывающей комбинации орбитали атома Н должны быть взяты в виде разности $(1s_a - 1s_b)$ (рис. 38).

Таким образом получаются две различные осв-МО, которые описываются следующими волновыми функциями:

$$\Psi(\sigma_s^{c_B}) = C_1 2s + C_2 (1s_a + 1s_b), \tag{91}$$

$$\Psi(\sigma_z^{_{CB}}) = C_3 2 p_z + C_4 (1 s_a - 1 s_b).$$
(92)

Разрыхляющие МО, соответствующие функциям $\psi(\sigma_s^{c_B})$ и $\psi(\sigma_z^{c_B})$, в области между ядрами имеют узлы. Их по-

Рис 37. Перекрывание 1*s*-орбиталей агомов водорода с 2*s*-орбиталью атома бериллия.

Р н.с. 38. Перекрывание 1*s*-орбиталей атомов водорода с 2*p_z*-орбиталью атома бериллия.

лучают, вычитая из 2s- и $2p_z$ -орбиталей бериллия сумму $(1s_a+1s_b)$ и разность $(1s_a-1s_b)$ соответственно:

$$\psi(\sigma_s^{\text{pasp}}) = C_5 2s - C_6 (1s_a + 1s_b), \tag{93}$$

$$\psi(\sigma_z^{pa_{3}p}) = C_7 2 p_z - C_8 (1s_a - 1s_b).$$
(94)

Для более точного описания этих осв. и оразр-орбиталей нужно определить числовые значения коэффициентов для Ве и Н в уравнениях (91)-(94). Ни один из существующих приближенных методов вычисления коэффициентов не может быть описан в настоящей книге из-за сложности математического аппарата. Эти коэффициенты можно оценить чисто качественно. Орбитали бериллия 2s и 2pz значительно менее устойчивы, чем орбитали 1s атомов водорода (Н более электроотрицателен, чем Ве), поэтому электроны на связывающих МО значительную часть времени будут пребывать около ядра Н и реже — около ядра Ве. Это означает, что $2C_2^2 > C_1^2$ И $2C_4^2 > C_3^2$. Находясь на разрыхляющей орбитали, электрон должен чаще быть около Ве, т. е. $C_5^2 > 2C_6^2$ и $C_7^2 > 2C_8^2$. (Более подробное объяснение соотношений между коэффициентами приводится в упражнении 3-1.)

Орбитали бериллия $2p_x$ и $2p_y$ не принимают участия в образовании связей, поскольку в линейной молекуле они являются орбиталями π -типа, а водород не имеет атомных орбиталей, способных к π -взаимодействию. Эта орбитали в BeH₂ являются *несвязывающими*. Граничиые поверхности орбиталей молекулы BeH₂ изображены на рис. 39.

3-2. Энергетические уровни молекулы ВеН2

Схема энергетических уровней МО молекулы BeH₂, приведенная на рис. 40, составлена следующим образом. В левой части диаграммы расположены валентные орбитали центрального атома, причем более устойчивый 2s-уровень располагается ниже 2p-уровня. Орбитали 1s двух атомов водорода находятся в правой части диаграммы. Вследствие различия в электроотрицательности 1s-уровни водорода расположены ниже 2s- и 2p-

Рис. 39. Граничные поверхности МО молекулы BeH_2 .

уровней атома бериллия. В середине диаграммы находятся молекулярные орбитали — связывающие, разрыхляющие и несвязывающие. Как обычно, связывающие MO устойчивее соответствующих атомных орбиталей, а

Рис. 40. Энергетические уровни МО молекулы ВеН₂.

разрыхляющие менее устойчивы, чем соответствующие атомные уровни. Орбитали $2p_x$ и $2p_y$ атома Ве являются несвязывающими, и их уровень остается неизмененным. Эти орбитали перемещают без изменения в колонку МО.

Основное состояние молекулы BeH_2 определяем, заполняя валентными электронами наиболее устойчивые MO (см. рис. 40). Всего имеется четыре валентных электрона — два от бериллия $(2s)^2$ и по одному от каждого атома водорода. Следовательно, основное состояние представляет собой

 $(\sigma_s^{\rm CB})^2 (\sigma_z^{\rm CB})^2 = {}^1\Sigma.$

Упражнение

3-1. Предположим, что плотность заряда электронного облака распределена в $\sigma^{{\rm c}\,{\rm B}}\text{-}MO$ следующим образом.

$$\begin{split} &\sigma_s^{\rm CB}: {\rm Be}\ 30\%, \quad 2{\rm H}\ 70\%, \\ &\sigma_z^{\rm CB}: {\rm Be}\ 20\%, \quad 2{\rm H}\ 80\%. \end{split}$$

Вычислите волновые функции для $\sigma_s^{c_B}$ и $\sigma_z^{c_B}$, а также полное распределение заряда в молекуле BeH₂.

Решение. Поскольку условие нормировки требует, чтобы $\int |\psi|^2 d\tau = 1, \text{ для } \sigma_s^{CB} \text{ имеем}$ $\int |\psi(\sigma_s^{CB})|^2 d\tau = C_1^2 \int (2s)^2 d\tau + C_2^2 \int (1s_a)^2 d\tau + C_2^2 \int (1s_b)^2 d\tau + 2C_1C_2 \int (2s) (1s_a) d\tau + C_2^2 \int (1s_b)^2 d\tau + 2C_1C_2 \int (2s) (1s_a) d\tau + C_2^2 \int (1s_b)^2 d\tau$

$$+ 2C_1C_2 \int (2s)(1s_b) d\tau + 2C_2^2 \int (1s_a)(1s_b) d\tau = 1.$$

Если каждая из атомных орбиталей 2s, $1s_a$ и $1s_b$ нормирована отдельно, то

 $\int |\psi(\sigma_s^{CB})|^2 d\tau = C_1^2 + C_2^2 + C_2^2 + Интеграл перекрывания = 1.$

Принимая интеграл перекрывания равным нулю, получаем окончательно

$$\int |\psi(\sigma_s^{\rm CB})|^2 d\tau = C_1^2 + 2C_2^2 = 1.$$

Вероятность нахождения электрона на орбитали σ_s^{CB} при обследовании всего пространства равна, конечно, 1. Уравнение $C_1^2 + 2C_2^2 = 1$ показывает, каким образом распределена полная вероятность член C_1^2 представляет собой вероятность нахождения электрона на орбитали σ_s^{CB} в области ядра Ве, а член $2C_2^2$ вероятность пребывания этого электрона около ядер Н. Поскольку указано, что плотность электронного облака около атома Ве составляет 30%, а около атомов Н — 70% (для орбитали σ_s^{CB}), то вероятности равны соответ-

ственно 0,30 для Ве и 0,70 для атомов Н. Отсюда находим значения коэффициентов \mathcal{C}_1 и \mathcal{C}_2

$$C_1^2 = 0,30$$
 или $C_1 = 0,548,$
 $2C_2^2 = 0,70$ или $C_2 = 0,592.$

Аналогично для орбитали σ_z^{cB} имеем уравнение $C_3^2 + 2C_4^2 = 1$; снова определяем коэффициенты, исходя из заданного условия о распределенит плотности электронного заряда:

 $C_3^2 = 0,20$ или $C_3 = 0,447,$ $2C_4^2 = 0,80$ или $C_4 = 0,632.$

Таким образом, вычисленные волновые функции имеют вид

$$\begin{aligned} &\psi\left(\sigma_{z}^{c_{0}}\right) = 0.548\left(2s\right) + 0.592\left(1s_{a} + 1s_{b}\right), \\ &\psi\left(\sigma_{z}^{c_{0}}\right) = 0.447\left(2p_{z}\right) + 0.632\left(1s_{a} - 1s_{b}\right). \end{aligned}$$

Конфигурация основного состояния $\text{BeH}_2(\sigma_s^{\text{CB}})^2(\sigma_z^{\text{CB}})^2$. Распределение этих четырех валентных электронов вокруг атомов Ве и Н находим следующим образом.

Ве
$$\sigma_s^{CB}: 2$$
 электрона $C_1^2 = 2 \cdot 0.39 = 0.60$
 $\sigma_z^{CB}: 2$ электрона $C_3^2 = 2 \cdot 0.20 = 0.40$
Всего 1 электрон
 $H_a = H_b$ $\sigma_s^{CB}: 2$ электрона $C_2^2 = 2 \cdot 0.35 = 0.70$
 $\sigma_z^{CB}: 2$ электрона $C_4^2 = 2 \cdot 0.40 = 0.80$

Всего 1,5 электрона на Н

Молекула ВеН₂, лишенная четырех валентных электронов, представляла бы собой

$$H^{+} - Be^{2+} - H^{+}$$

Разместив валентные электроны описанным выше способом, получим окончательное распределение.

$$H^{-0,5} - H^{+} - H^{-0,5}$$

Существенно отметить, что плотность электронного облака на нормированной молекулярной орбитали в области данного ядра определяется квадратом коэффициента при данной атомной орбитали (в предположении нулевого перекрывания).

3-3. Теория валентных связей в применении к ВеН2

Рассматривая молекулу BeH₂ в рамках метода MO, мы считали, что четыре валентных электрона делокализованы между всеми тремя атомами и располагаются на молекулярных орбиталях. Граничные поверхности

Рис. 41. Образование двух гибридных *sp*-орбиталей.

этих орбиталей изображены на рис. З9 ($\sigma_s^{c_B}$ и $\sigma_z^{c_B}$). Однако электронное строение молекулы BeH₂ можно представить иначе. Будем считать, что четыре валентных электрона локализованы попарно на двух одипаковых связывающих орбиталях. Объединяя атомные 2s- и 2p₂-орбитали бериллия, образуем две одинаковые *гибридные орбитали* (см. рис. 41). Эти гибридные орбитали, sp_a и sp_b, хорошо перекрываются с орбиталями 1s_a и 1s_b водорода соответственно. При этом получаются две эквивалентные связывающие орбитали (см. рис. 42):

$$\psi_1 = C_1 s p_a + C_2 1 s_a, \tag{95}$$

$$\psi_2 = C_1 s p_b + C_2 1 s_b. \tag{96}$$
Представления об эквивалентных гибридных о-орбиталях центрального атома оказываются особенно

Рис. 42. Образование валентных связей в молекуле ВеН₂ с участием двух гибридных *sp*-орбиталей атома бериллия.

полезными при рассмотрении **о-связей** в плоских треугольных и тетраэдрических молекулах.

Упражнение

3-2. Покажите, что общее описание молекулы BeH₂ в методе МО эквивалентно описанию методом валентных связей при условии, что в уравнениях (91) и (92) $C_1 = C_3$ и $C_2 = C_4$ (Постройте локализованные функции ψ_1 и ψ_2 , исходя из молекулярных волновых функций)

3-4. Линейные трехатомные молекулы с π-связями

В качестве примера рассмотрим строение молекулы CO_2 . Эта молекула изображена в принятой стандартной системе координат на рис. 43. CO_2 является примером линейной трехатомной молекулы, у которой валентные орбитали всех трех атомов имеют одно и то же значение квантового числа *n*, т. е. принадлежат к *ns*- и *np*-типу. Образование σ -связей происходит за счет 2*s*и $2p_2$ -орбиталей углерода и $2p_2$ -орбиталей атомов кислорода*. В результате получаются такие же о орбитали, как и в случае BeH₂, с той лишь разницей, что атомы кислорода используют для построения МО в основном

2*p*_z-орбитали вместо 1*s*-орбиталей атомов водорода. Получаем следующие *σ*-волновые функции:

$$\psi(\sigma_{s}^{c_{B}}) = C_{1}2s + C_{2}(2p_{z_{a}} + 2p_{z_{b}}), \qquad (97)$$

$$\psi(\sigma_{s}^{\text{pasp}}) = C_{3}2s - C_{4}(2p_{z_{a}} + 2p_{z_{b}}), \qquad (98)$$

$$\psi(\sigma_{z}^{c_{B}}) = C_{5}2p_{z} + C_{6}(2p_{z_{a}} - 2p_{z_{b}}), \qquad (99)$$

$$\psi(\sigma_{z}^{\text{pasp}}) = C_{7}2p_{z} - C_{8}(2p_{z_{a}} - 2p_{z_{b}}).$$
(100)

 π -MO образуются за счет валентных $2p_x$ - и $2p_y$ -орбиталей всех трех атомов. Найдем сначала орбитали π_x .

^{*} В атоме кислорода валентными орбиталями являются 2s и 2p. Использование наряду с $2p_z$ атомных 2s-орбиталей кислорода приводит к значительно более точному виду σ -MO. Однако для простоты при образовании σ -MO мы будем учитывать только $2p_z$ -орбитали атома кислорода.

Исходя из атомных 2p_x-орбиталей кислорода, можно получить две различные линейные комбинации:

$$2p_{x_a} + 2p_{x_b}$$
, (101)

$$2p_{x_a} - 2p_{x_b}.$$
 (102)

Из рис. 44 видно, что комбинация $(2p_{x_a} + 2p_{x_b})$ перекрывается с орбиталью $2p_x$ углерода. Поскольку направления x и y эквивалентны, получаем однотипные π^{cB} и π^{pa3p} -орбитали:

$$\psi(\pi_x^{c_B}) = C_9 2p_x + C_{10} (2p_{x_a} + 2p_{x_b}), \qquad (103)$$

$$\Psi(\pi_{y}^{c_{B}}) = C_{9}2p_{y} + C_{10}(2p_{y_{a}} + 2p_{y_{b}}), \qquad (104)$$

$$\Psi(\pi_x^{\text{parp}}) = C_{11} 2p_x - C_{12} (2p_{x_a} + 2p_{x_b}), \qquad (105)$$

$$\underbrace{\psi\left(\pi_{y}^{\text{pasp}}\right)}_{y} = C_{11}2p_{y} - C_{12}(2p_{y_{a}} + 2p_{y_{b}}).$$
(106)

Суммарное перскрывание комбинации $(2p_{x_a} - 2p_{x_b})$ с $2p_{x}$ -орбиталью атома углерода (см. рис. 44) равно нулю, поэтому в нашей схеме МО эта орбиталь является несвязывающей. На ее основе получаем чормированные волновые функции:

$$\psi(\pi_{x}) = \frac{1}{\sqrt{2}} \left(2p_{x_{a}} - 2p_{x_{b}} \right), \tag{107}$$

$$\psi(\pi_y) = \frac{1}{\sqrt{2}} \left(2p_{y_a} - 2p_{y_b} \right). \tag{108}$$

Граничные поверхности различных МО для молекулы CO_2 изображены на рис. 45. На рис. 46 приведена схема энергетических уровней CO_2 . Обратите внимание на то, что атомные орбитали кислорода устойчивее орбиталей атома углерода. Пользуясь указанной схемой, можно расположить все 16 валентных электронов $(2s^22p^2$ атома С и $2s^22p^4$ атомов О). В результате получаем основное состояние молекулы CO_2 :

$$(2s_a)^2(2s_b)^2(\sigma_s^{\scriptscriptstyle CB})^2(\sigma_z^{\scriptscriptstyle CB})^2(\pi_{x,y}^{\scriptscriptstyle CB})^1(\pi_{x,y})^4, \qquad ^1\Sigma.$$

В этом состоянии четыре электрона находятся на σ^{c_B} орбиталях и четыре электрона — на π^{c_B} орбиталях. Таким образом, в молекуле CO_2 имеются две σ - и две

Результирующее перекрывание равно нулю

Рис. 44. Перекрывание $2p_x$ -орбиталей атома углерода с $2p_x$ -орбиталями двух атомов кислорода

π-связи. Такой же результат получается при рассмотрении молекулы CO₂ по мегоду валентных связей (рис. 47).

8 Г. Грей

3-5. Характеристика связей в молекуле СО2

Длина связи С-О в молекуле СО₂ равна 1,162 Å, т. е. больше, чем в молекуле СО Это вполне объяснимо,

Рис. 47. Строение молекулы СО₂ по методу валентных связей.

если вспомнить, что связь между углеродом и кислородом в CO тройная (C \equiv O), а в CO₂ двойная (C=O).

Энергию связи в CO₂ можно определить двумя способами. Энергия диссоциации связи, которая была введена в гл. II, относится к случаю, когда разрывается связь между двумя агомами. Для молекулы CO₂ течловой эффект реакции

$$O - C - O \xrightarrow{D} CO + O \tag{109}$$

отвечает диссоциации на один атом кислорода и молекулу CO; он равен 127 *ккал/моль*. Однако среднюю эпергию связи С—О можно определить только в результате полного расщепления молекулы CO₂ на атомы в их основном состоянии, причем должны разорваться обе связи между углеродом и водородом:

$$O - C - O \xrightarrow{E} C + O + O. \tag{110}$$

Средняя энергия связи С—О (E_{cp}) равна половине энергии диссоциации на атомы (E/2). Очевидно, E равна сумме $D(CO_2)$ и D(CO):

$$\begin{array}{l} O - C - O \xrightarrow{D (CO_3)} C - O + O \xrightarrow{D (CO)} C + O + O, \quad (111) \\ E = D (CO_2) + D (CO) = 127 + 256 = 383 \ \kappa \kappa a n/month{\ Monthematrix} a n/monthematrix} a n/monthematrix} a n/monthematrix a n/monthematrix} a n/monthematrix}$$

И

 $E/2 = E_{\rm cp} \simeq 192$ ккал/моль.

В таблицах энергии связей мы будем пользоваться обоими обозначениями -- D и $E_{\rm cp}$.

В табл. 18 приводятся термы основного состояния, межатомные расстояния и энергии связей ряда линейных трехатомных молекул.

3-6. Ионные трехатомные молекулы. Галогениды щелочноземельных металлов

Молекулы, состоящие из атомов щелочноземельных металлов (Be, Mg, Ca, Sr, Ba) и галогенов, вероятно, лучше всего могут быть описаны с помощью ионной модели, поскольку разница в электроотрицательности между атомами этих металлов и атомами галогенов достаточно велика. Таким образом, связь в рассматриваемых молекулах можно представить следующим образом:

$$X^{-} - M^{2+} - X^{-}$$
.

В качестве примера рассмотрим расчет энергии связи в молекуле CaCl₂.

Таблица 18 Свойства линейных трехатомных молекул^а

Молекула	Основное состояние	Связь	Межатомное расстояние, Å	Энергия связи, ккал/моль
BeBr	īΣ	BrBe-Br		
5(5).2	_	Be-Br		89 (E_{cp})
BeC1 ₂	15	CIBe – CI	1,74	147 (D)
		BeCl		$109 (E_{\rm cp})$
Bel ₂	12	IBe-I		00 (5)
60	15	Be-1	1.100	$69 (E_{cp})$
CO_2	12	00-00	1,162	127(D) 102(E)
COS	15		1 561	$132(L_{cp})$
C03		00-3 80 8	1,501	120 (D)
CO_2	-	CS	1,004	$128(E_{22})$
CSe	15	C-Se		$112 (E_{\rm cp})$
	iv .	CICa = CI	2.54	176(D)
010.2	-	CaCl	1,01	$113(E_{cp})$
$CdBr_2$	12	BrCd – Br	2,39	76(D)
$CdCl_2$	1 <u>2</u>	CICdCI	2,23	84 (D)
CdI ₂	12	ICd - I	2,58	50(D)
HCN	12	HC-N	1,153	207(D)
		H-CN	1,065	114(D)
$HgBr_2$	12	BrHg -Br	2,43	72 (D)
		HgBr		44 ($E_{\rm cp}$)
HgBrl	12	BrHg—I		64 (D)
$HgCl_2$	12	Cillg-Ci	2,30	81 (D)
U~CID.	15	Hg -Cl		$54 (E_{cp})$
HaCu	12	BrHg-Cl		$\frac{17(D)}{77(D)}$
ngun	12	IrigCI		1 75(D)
HoF.	15			100(D)
ingr 2	-	Hg-F		$66(E_{m})$
HgI,	12	IHg_I	2.60	60(D)
6 -		Hg—I		$35 (E_{cp})$
NO_2^+	١Σ	NO	1,10	
MgCl ₂	$^{1}\Sigma$	CIMg-CI	2,18	136 (D)
		Mg-Cl		99 (E_{cp})
SiS ₂	15	Si –S		$70 (E_{\rm cp})$
$ZnCl_2$	12	CIZn-Cl	2,12	96(D)
Ln_2	1 12	IZN1	l	1 53(D)

^a Cottrell T. L., The Strengths of Cnemical Bonds, Butterworths Scientific Publications, London, 1958, ταδπ. 11.5.1.

Пример

Определим среднюю энергию связи Ca-Cl в CaCl₂:

$$Cl_a^- \xrightarrow{R} Ca^{2+} \xrightarrow{R} Cl_b$$

В молекуле CaCl₂ (как и в любой молекуле MX₂) действуют две равные по величине силы притяжения, $Ca^{2+}-Cl_a^-$ и $Ca^{2+}-Cl_b^-$, каждая на расстоянии R. Кроме того, Cl_a^- и Cl_b^- испытывают взанмное отталкивание на расстоянии 2R. Суммарную электростатическую энергию можно записать как

Электростатическая энергия =
$$-\frac{2e^2}{R} - \frac{2e^2}{R} + \frac{e^2}{2R} = -\frac{3.5e^2}{R}$$
.

На одну связь приходится половина этой величины, т е. — 1,75 e^2/R . Эпергию вандерваальсова взаимодействия можно приближенно определить как энергию взаимного притяжения между атомами соответствующих инертных газов (см. гл. 11). В нашем случае и иону Cl-,

Рис. 48. Эффективные радиусы Аг, К⁺ и Са²⁺.

и нопу Ca²⁺ соответствует один и тот же инертный газ — аргон. Однако размеры двухзарядного иона типа M^{2+} намного меньше размеров атома изоэлектронного инертного газа (см. рис. 48). Поэтому вандерваальсово взаимодействие в молекуле типа MX_2 может огличаться от взаимодействия между парами атомов инертных газов в большей степени, чем в случае молекул типа MX. Вероятно, истиная величина вандерваальсова отталкивания несколько меньше величины, определенной таким путем.

Окончательное выражение для энергии каждой связи имеет вид

$$\Pi \mathfrak{I} = \frac{-1,75e^2}{R} + be^{-aR} - \frac{d}{R^6}.$$

Межатомное расстояние Ca—Cl в CaCl2 равно 2,54 Å, или 4,82 ае. Найдя по табл. 15 параметры для пары Ar—Ar, записываем

$$\Pi \Im = \frac{-1.75}{4.82} + 350e^{(-1.92)(1.82)} - \frac{103}{(4.82)^6}$$

или

$$\Pi \Im = -0,337ae = -9,17 \ \Im e.$$

Половина энергии, необходимой для диссоциации CaCl₂ на ноны, равна 9,17 эв:

$$\operatorname{CaCl}_{2} \xrightarrow{E'} \operatorname{Ca}^{2+} + \operatorname{Cl}^{-} + \operatorname{Cl}^{-}, \ E' = -2\Gamma \operatorname{I} \operatorname{\tilde{\mathcal{I}}}.$$

Для определения средней энергии связи Еср рассмотрим процесс

$$CaCl_2 \xrightarrow{E} Ca + Cl + Cl.$$

Для этого процесса

$$E = E' + 2C \Im (CI) - \Pi \mathcal{U}_1 (Ca) - \Pi \mathcal{U}_2 (Ca) + E_{cp} = \frac{E}{2}.$$

Подставив в это выражение СЭ(Cl) = 3,61 эв, ПИ₁(Ca) = 6,11 эв, ПИ₂(Ca) = 11,87 эв и E'=18,34 эв, получаем E=7,58 эв или 175 ккал/моль и E_{cp} (Ca—Cl) = 88 ккал/моль. Это значение E_{cp} можно сопоставить с экспериментальным значением, равным 113 ккал/моль. По-видимому, чисто ионная модель для молекулы CaCl₂ оправдывает себя в меньшей степени, чем в случае галогенидов щелочных металлов. Вообще галогениды щелочноземельных металюв обладают значительно более «ковалентным характером», чем в CaCl₂ следовало бы учесть заметный вклад энергин ковалентной сгруктуры.

Энергии связей для некоторых галогевидов щелочноземельных мегаллов приведены в табл. 18

Дополнительные упражнения

1. Определите терм основного состояния молекулы N₃.

2. Вычислите энергию связи Ве—СІ в ВеСІ₂. Второй потенциал понизации атома бериллия ПИ₂=18,21 *эв*.

3. Рассмотрите характер связей в молекулах CO₂, CS₂ и CSe₂ с помощью метода MO. Сравните характеристики связей в этих молекулах.

^{*} В настоящее время установлено, что молекулы галогенидов Ва, фторида и хлорида Sr и фторида Ca нелинейны Это можно объяснить только в том случае, если считать, что связи в молекулах галогенидов щелочноземельных металлов в значительной степени ковалентные и в их образовании у Ba, Sr, Ca (по не Mg и Be) принимают участие не только ns- и np-, но и nd-орбитали. — Прим. ред

плоские треугольные молекулы

4-1. Молекула BF₃

Молекула трехфтористого бора построена как плоский треугольник, причем все углы между связями * F—B—F равны 120°. В атоме бора имеются валентные

Рис. 49. Система координат для молекулы BF₃.

2s- и 2p-орбитали, которые могут перекрываться с 2sи 2p-орбиталями фтора. На рис. 49 изображена система координат, удобная для рассмотрения характера связей в молекуле BF₃.

^{*} Термин «углы между связями» означает угол между прямыми линиями, соединяющими ядра атомсв.

От каждого атома фтора нужна только одна валентная о-орбиталь. Мы будем рассматривать голько атомные 2*p*-орбитали (AO), так как в полученных МО можно заменить 2*p*-AO любой линейной комбинацией 2*s*- и 2*p*-AO фтора. Можно, однако, полагать, что весьма устойчивая 2*s*-орбиталь атома фтора не участвует заметным образом в образовании о-связи. Потенциал ионизации для электрона на 2*s*-орбитали фтора превышает 40 *эв*.

4-2. Молекулярные о-орбитали

Молекулярные о-орбитали образуются за счет 2s-, $2p_{\chi}$ - и $2p_{y}$ -орбиталей атома бора и $2p_{z_{a}}$ -, $2p_{z_{b}}$ - и $2p_{z_{c}}$ - орбиталей атомов фтора. Нам надо найти такую линейную комбинацию $2p_{z_{a}}$, $2p_{z_{b}}$ и $2p_{z_{c}}$, которая дает максимальное перекрывание с орбиталями 2s, $2p_{\chi}$ и $2p_{y}$. 2s-Орбиталь атома бора изображена на рис. 50. С этой орбиталью перекрывается комбинация $(2p_{z_{a}} + 2p_{z_{b}} + 2p_{z_{c}})$. Таким образом, MO, соответствующими 2s-орбитали бора, являются

$$\psi(\sigma_s^{c_B}) = C_1 2s + C_2 (z_a + z_b + z_c), \qquad (112)$$

$$\psi(\sigma_s^{\text{pasp}}) = C_3 2s - C_4(z_a + z_b + z_c), \quad (113)$$

где $z_a = 2p_{z_a}, z_b = 2p_{z_b}$ и $z_c = 2p_{z_c}.$ Орбиталь $2p_y$ атома бора изображена на рис. 51. Ее

Орбиталь $2p_y$ атома бора изображена на рис. 51. Ее положительная и отрицательная ветви перекрываются с комбинацией (z_b -- z_c). Соответствующие МО имеют вид

$$\psi(\sigma_{y}^{_{CB}}) = C_{5}2p_{y} + C_{6}(z_{b} - z_{c}), \qquad (114)$$

$$\psi(\sigma_{y}^{pa3p}) = C_{7}2p_{y} - C_{8}(z_{b} - z_{c}).$$
(115)

Орбиталь $2p_x$ атома бора показана на рис. 52. С ней хорошо перекрывается комбинация ($z_a - z_b - z_c$). Однако в этом случае появляется некоторое осложнение: перекрывание z_a -, z_b - и z_c -орбиталей с $2p_x$ неодинаково. Если z_a непосредственно перекрывается с положительной ветвью $2p_x$, то орбитали z_b и z_c располагаются под

 $2s + z_a + z_b + z_c$

Рис. 50. Перекрывание 2*s*-орбитали атома бора с 2*p_z*-орбиталями атомов фтора.

 $2p_y+z_b-z_c$

углом 60° к линии наибольшего распространения отрицательной ветви этой орбитали. Поэтому нам необходимо найти ту часть орбитали 2p_x, которая расположена

 $2p_{x} + z_{a} - z_{h} - z_{c}$

Рис. 52. Перекрывание 2*р*_x-орбитали атома бора с 2*р*_z-орбиталями атомов фтора

вдоль направления z_b . Эта часть находится просто умножением на соз 60°, или $1/_2$. Таким образом, *сумма* $z_b + z_c$ дает такую же величину интеграла перекрывания, как и одна орбиталь z_a . Соответствующая комбинация представляет собой ($z_a - \frac{1}{2} z_b - \frac{1}{2} z_c$), а молекулярные оорбитали имеют вид

$$\psi(\sigma_x^{\rm CB}) = C_9 2p_x + C_{10} \left(z_a - \frac{1}{2} z_b - \frac{1}{2} z_c \right), \qquad (116)$$

$$\psi(\sigma_x^{\text{pasp}}) = C_{11} 2p_x - C_{12} \left(z_a - \frac{1}{2} z_b - \frac{1}{2} z_c \right). \quad (117)$$

4-3. Молекулярные п-орбигали

Молекулярные π -орбитали образуются за счет $2p_z$ орбитали атома бора и $2p_y$ -орбиталей атомов фтора. Как видно из рис 53, с орбиталью $2p_z$ перекрывается

 $2p_z + y_a + y_b + y_c$

Рис. 53. Перекрывание 2*p*₂-орбитали атома бора с 2*p*_y-орбиталями атомов фтора.

комбинация ($y_a + y_b + y_c$). Таким образом, связывающие и разрыхляющие π -МО могут быть описаны как

$$\psi(\pi_z^{\rm CB}) = C_{13} 2p_z + C_{14}(y_a + y_b + y_c), \qquad (118)$$

$$\psi(\pi_z^{\text{pasp}}) = C_{15} 2p_z - C_{16}(y_a + y_b + y_c).$$
(119)

Поскольку в молекуле имеются три орбитали $2p_y$ (по одной от каждого атома фтора), из них можно образо-

вать еще две независимые линейные комбинации: $(y_a - y_c)$ и $(y_a - 2y_b + y_c).$ Однако, как видно из рис. 54,

Рис. 54. Две комбинации 2*p*_y-орбиталей атомов фгора с 2*p*_z-орбиталью атома бора, соответствующие нулевому перекрыванию.

они не перекрываются с $2p_z$ -орбиталью атома бора. Таким образом, имеем еще две несвязывающие орбитали:

$$\psi(\pi_1) = \frac{1}{\sqrt{2}} (y_a - y_c), \qquad (120)$$

$$\psi(\pi_2) = \frac{1}{\sqrt{6}} (y_a - 2y_b + y_c). \tag{121}$$

4-4. Энергетические уровни молекулы BF₃

Схема энергетических уровней МО молекулы BF_3 приведена на рис. 55. Валентные орбитали атома фтора устойчивее орбиталей атома бора, поэтому электроны на связывающих МО проводят больше времени в области ядер атомов фтора. В плоской треугольной молекуле типа BF_3 σ_v - и σ_u -орбитали являются вырожденными. Поскольку это никак не следует из вида уравнений (114)—(117), пояснение дается в специальном разделе

Рис. 55. Энергетические уровни орбиталей молекулы BF3.

4-5. Эквивалентность σ_x - и σ_y орбиталей

Обозначим величину полного перекрывания нормированной комбинации $\sqrt{\frac{2}{3}} \left(z_a - \frac{1}{2} z_b - \frac{1}{2} z_c \right)$ с $2p_x$ символом $S(\sigma_x)$, а полное перекрывание $\frac{1}{\sqrt{2}} \left(z_b - z_c \right)$ с $2p_y - S(\sigma_y)$. Непосредственное о-перекрывание, например

Рис. 56. Непосредственное о-перекрывание между двумя *р*-орбиталями.

перекрывание между z_a и $2p_x$ (рис. 56), обозначим $S(p_o, p_o)$. Выразим значения $S(\sigma_x)$ и $S(\sigma_y)$ через

$$\begin{split} S(p_{\sigma}, p_{\sigma}):\\ S(\sigma_{x}) &= \sqrt{\frac{2}{3}} \int (2p_{x}) \left(z_{a} - \frac{1}{2} z_{b} - \frac{1}{2} z_{c} \right) d\tau = \\ &= \sqrt{\frac{2}{3}} \left[S(p_{\sigma}, p_{\sigma}) + \frac{1}{2} \cos 60^{\circ} S(p_{\sigma}, p_{\sigma}) + \\ &+ \frac{1}{2} \cos 60^{\circ} S(p_{\sigma}, p_{\sigma}) \right] = \\ &= \sqrt{\frac{2}{3}} \left(\frac{3}{2} \right) \left[S(p_{\sigma}, p_{\sigma}) \right] = \sqrt{\frac{3}{2}} S(p_{\sigma}, p_{\sigma}), \end{split}$$
(122)
$$S(\sigma_{y}) &= \frac{1}{\sqrt{2}} \int (2p_{y}) (z_{b} - z_{c}) d\tau = \\ &= \frac{1}{\sqrt{2}} \left[\cos 30^{\circ} S(p_{\sigma}, p_{\sigma}) + \cos 30^{\circ} S(p_{\sigma}, p_{\sigma}) \right] = \\ &= \frac{1}{\sqrt{2}} \left(\frac{1}{3} - \frac{1}{3} + \frac{1}{3} \right) \left[S(p_{\sigma}, p_{\sigma}) \right] = \sqrt{\frac{3}{2}} S(p_{\sigma}, p_{\sigma}). \end{aligned}$$
(123)

Поскольку интегралы перекрывання для σ_x и σ_y одннаковы, а исходные атомные орбитали бора и фтора находятся на одном и том же энергетическом уровне, очевидно, что в плоских треугольных молекулах σ_x - и σ_y орбитали являются вырожденными. Однако если углы между тремя связями отличаются от 120°, это вырождение снимается.

4-6. Основное состояние молекулы BF₃

В рассматриваемой молекуле имеется всего 24 валентных электрона [по семь от каждого атома фтора $(2s^2 2p^5)$ и 3 от атома бора $(2s^2 2p)$]. Помещая эти электроны на наиболее устойчивые молекулярные орбитали, получаем конфигурацию основного состояния:

$$\begin{aligned} &(2s_a)^2(2s_b)^2(2s_c)^2(\sigma_s^{\rm CB})^2(\sigma_s^{\rm CB})^2(\sigma_y^{\rm CB})^2(\pi_z^{\rm CB})^2(\pi_1)^2(\pi_2)^2 \\ &(2p_{x_a})^2(2p_{x_b})^2(2p_{x_c})^2, \qquad S=0. \end{aligned}$$

Три полные о-связи обеспечиваются шестью электронами на σ^{cB} -орбиталях. Кроме того, два электрона на π^{cB}_{z} орбитали соответствуют еще одной π -связи. Длина связи B—F в молекуле BF₃ составляет 1,291 Å, энергия связи равна 154 ккал/моль.

Рис. 57. Образование трех гибридных *sp*²-орбиталей.

9 Г Грей

4-7. Молекула BF₃ в методе валентных связей

Описание молекулы BF_3 в методе МО можно сравнить с описанием в методе валентных связей (BC). В рамках метода BC молекула BF_3 содержит три эквивалентные гибридные sp^2 -орбитали, образованные за счет 2s-, $2p_{x}$ - и $2p_{y}$ -орбиталей атома бора (рис. 57).

Рис. 58. Строение молекулы ВГ3 по методу валентных связей.

Каждая sp^2 -орбиталь на 1/3 носит s-характер и на 2/3 *p*-характер. Эти три гибридные орбитали перекрываются с тремя атомными $2p_2$ -орбиталями бора и могут, таким образом, вместить три пары электронов о-связей. Кроме того, при перекрывании $2p_2$ -орбитали бора с одной из трех $2p_{u}$ -орбиталей фтора образуется одна π -связь. Таким образом, молекулу BF₃ можно изобразить с помощью трех резонансных структур (рис. 58). Заметим, что в этих структурах пара электронов π -связи как бы движется вокруг «кольца», что эквивалентно одной паре электронов на делокализованной молекулярной орбитали π_c^{cb} .

Упражнение

4-1. Найдите волновую функцию для трех эквивалентных гибридных *sp*²-орбиталей.

Решение. При составлении волновой функции удобно воспользоваться системой координат, приведенной на рис 49. При этом три орбитали будут направлены к атомам a, b и c. Орбитали sp^2 образуются за счет атомных орбиталей s, p_x и p_y . Каждая гибридная орбиталь на $\frac{1}{3}$ носит s-характер. Для образования связи с атомом a используется одна из p-орбиталей, а именно p_x (p_y не перекрывается с a). Каждая из орбиталей sp^2 на $\frac{2}{3}$ носит p-характер, поэтому волновая функция для sp^2_a представляет собой

$$\psi(sp_a^2) = \sqrt{\frac{1}{3}}s + \sqrt{\frac{2}{3}}p_x.$$

Оставшаяся третья орбиталь p_x равномерно поделена между b и c. Поскольку еще совсем не была использована орбиталь p_y , а она хорошо перекрывается c b и c, распределим ее равномерно между b и c с тем, чтобы sp_b^2 н sp_c^2 имели на $2/_3$ p-характер Выбирая знаки перед функциями таким образом, чтобы большие и равные доли были направлены к b и c, получаем

$$\begin{split} \Psi(sp_b^2) &= \sqrt{\frac{1}{3}} \, s - \sqrt{\frac{1}{6}} \, p_x + \sqrt{\frac{1}{2}} \, p_y, \\ \Psi(sp_c^2) &= \sqrt{\frac{1}{3}} \, s - \sqrt{\frac{1}{6}} \, p_x - \sqrt{\frac{1}{2}} \, p_y. \end{split}$$

На рис 57 изображены граничные поверхности sp_a^2 , sp_b^2 и sp_c^2 . Связывающие орбитали представляют собой комбинации орбиталей sp^2 с соответствующими σ -орбиталями атомов a, b и c:

$$\begin{split} \Psi_a &= c_1^{\psi}(sp_a^2) + c_2 z_a, \\ \Psi_b &= c_1^{\psi}(sp_b^2) + c_2 z_b, \\ \Psi_c &= c_1^{\psi}(sp_c^2) + c_2 z_c. \end{split}$$

4-8. Другие плоские треугольные молекулы

Во многих плоских треугольных молекулах центральными атомами являются элементы группы бора. Кроме того, такая структура характерна для некоторых молекул и комплексных ионов, например SO₃, NO₃⁻ и CO₃²⁻.

Таблица 19

Молекула	Связь	Межатомное расстояние, Å	Энергия связи Е _{ср} <i>ккал/моль</i>
BF	BF	1.291	154
BCI,	B C1	1,74	109
BBr ₃	B-Br	1,87	90
BH₃	B—H		93
B (CH ₃) ₃	B-C	1,56	89
Al (CH ₃) ₃	AI-C		61
B (OR)3 ⁶	B—OR	1,38	128
SO3	S-0	1,43	104
NO_3^-	N-O	1,22	
CO ₃ ²⁻	C0	1,29	
BO ³⁻	B-O	1,38	
		1	

Свойства плоских треугольных молекул а

^а Cottrell T. L., The Strengths of Chemical Bonds, Butterworths Scientific Publications, London, 1958, табл. 11.5.1. ^б R=CH, или C₂H₅, R=H, 1,36 Å.

В табл. 19 перечислен ряд молекул, имеющих форму правильного треугольника. В частности, еще одним примером может служить молекула ВН₃, которая более устойчива в виде димера:

 $BH_2 + BH_3 \rightarrow B_2H_6$.

Характер связей в молекуле диборана описан в ряде книг*.

^{*} Например, Cotton F. A., Wilkinson G., Advanced Inorganic Chemistry, John Wiley and Sons, Inc., — Interscience Publishers, New York, 1962. p. 200—203, Lipscomb W. N., Boron Hydrides, Benjamin, New York, 1963, Chap 2, Ballhausen C. J., Gray H. B, Introductory Notes on Molecular-Orbital Theory. New York, 1965, Chap. 7.

В молекулах В(CH₃)₃ и Аl(CH₃)₃ имеется правильная треугольная группировка вокруг центрального атома:

Координация каждого атома углерода — тетраэдрическая (см. главу V).

Дополнительные упражнения

1. В большинстве случаев связь с центральным атомом удобно представлять с помощью нормированной линейной комбинации орбиталей. Например, в плоской треугольной молекуле орбитали 2s соответствует комбинация $(z_a + z_b + z_c)$. Нормированная комбинация представляет собой $\frac{1}{\sqrt{3}} (z_a + z_b + z_c)$. Нормируйте комбинации $(z_b - z_c)$ и $(z_a - \frac{1}{2} z_b - \frac{1}{2} z_c)$.

2. Покажите эквивалентность описания плоских треугольных молекул методами МО и ВС при условии, что в уравнениях (112), (114) и (116) $C_1 = C_5 = C_9$ и $C = \sqrt{3} C_2 = \sqrt{2} C_6 = \sqrt{\frac{3}{2}} C_{10}$. Можно ли ожидать, что в общем случае $C_1 = C_5$, $C_5 = C_9$, $\sqrt{3} C_2 = \sqrt{2} C_6$, $\sqrt{2} C_6 = \sqrt{\frac{3}{2}} C_{10}$? Ответ поясните.

ТЕТРАЭДРИЧЕСКИЕ МОЛЕКУЛЫ

5-1. Молекула СН₄

Молекула метана CH₄ построена в виде теграэдра, как изображено на рис. 59. Правильный тетраэдр можно получить, если атом углерода поместить в ценгре куба, а атом водорода — в его противолежащих вершинах. Начало координат совместим с центром куба, а оси x, y и z направим перпендикулярно его граням. Для образования σ -МО можно использовать все валентные орбитали атома углерода — $2s, 2p_x, 2p_y$ и $2p_z$.

На рис. 60 показано перекрывание атомной 2*s*-орбитали углерода с 1*s*-орбиталями четырех атомов водорода. Такому перекрыванию отвечает линейная комбинация атомных 1*s*-орбиталей $(1s_a + 1s_b + 1s_c + 1s_d)$. В результате получаем две MO:

$$\psi(\sigma_s^{c_B}) = C_1 2s + C_2 (1s_a + 1s_b + 1s_c + 1s_d), \quad (124)$$

$$\psi(\sigma_s^{\text{pasp}}) = C_3 2s - C_4 (1s_a + 1s_b + 1s_c + 1s_d).$$
(125)

Перекрывание $2p_z$ -орбитали углерода с четырьмя 1*s*орбиталями изображено на рис. 61. Положительная область $2p_z$ -орбитали перекрывается с $1s_a$ - и $1s_b$ -, а отрицательная — с $1s_c$ - и $1s_d$ -орбиталями. Соответствующая линейная комбинация имеет вид $(1s_a + 1s_b - 1s_c - 1s_d)$.

Орбитали углерода $2p_x$ и $2p_y$ перекрываются с четырьмя 1*s*-орбиталями точно так же, как и $2p_z$ (рис. 62). Соответствующие линейные комбинации 1*s*-орбиталей — $(1s_a+1s_d-1s_b-1s_c)$ для $2p_y$ и $(1s_a+1s_c-1s_b-1s_d)$ для $2p_x$. В результате получаются следующие МО:

$$\psi(\sigma_z^{c_B}) = C_5 2p_z + C_6(1s_a + 1s_b - 1s_c - 1s_d), \quad (126)$$

$$\Psi(\sigma_z^{\text{pasp}}) = C_7 2 p_z - C_8 (1 s_a + 1 s_b - 1 s_c - 1 s_d), \quad (127)$$

$$\psi(\sigma_y^{_{CB}}) = C_y 2p_y + C_{10}(1s_a + 1s_d - 1s_b - 1s_c), \quad (128)$$

$$\psi(\sigma_y^{\text{pasp}}) = C_{11} 2p_y - C_{12} (1s_a + 1s_d - 1s_b - 1s_c), \quad (129)$$

$$\psi(\sigma_x^{\rm CB}) = C_{13} 2p_x + C_{14} (1s_a + 1s_c - 1s_b - 1s_d), \quad (130)$$

$$\psi(\sigma_x^{\text{pasp}}) = C_{15} 2p_x - C_{16} (1s_a + 1s_c - 1s_b - 1s_d). \quad (131)$$

Рис. 60. Перекрывание 2s-орбитали атома углерода с 1s-орбиталями атомов водорода.

Рис. 61. Перекрывание 2*р*_х-орбитали атома углерода с 1s-орбиталями атомов водорода.

Рис 62. Перекрывание 2*p_x*- и 2*p_y*-орбиталей атома углерода с 1*s*-орбиталями атомов водорода.

5-2. Основное состояние молекулы СН₄

Схема энергетических уровней МО молекулы CH₄ приведена на рис. 63. Интегралы перекрывания орбиталей

Рис. 63. Энергетические уровни орбиталей молекулы СН₄.

 σ_x , σ_y и σ_z равны между собой, поэтому эти три МО являются энергетически вырожденными (равенство интегралов перекрывания ясно из рис. 61 и 62). В молекуле метана имеется восемь валентных электронов — четыре электрона атома углерода $(2s^2 2p^2)$ и четыре электрона атомов водорода (1s). Таким образом, основное состояние отвечает следующему заполнению MO:

$$(\sigma_s^{\scriptscriptstyle \mathrm{CB}})^2 (\sigma_x^{\scriptscriptstyle \mathrm{CB}})^2 (\sigma_y^{\scriptscriptstyle \mathrm{CB}})^2 (\sigma_z^{\scriptscriptstyle \mathrm{CB}})^2$$
, $S = 0$.

Это формально отвечает наличию четырех о-связей. Средняя энергия связи С—Н составляет 99,3 *ккал/моль*, расстояние С—Н в молекуле СН₄ равно 1,093 Å.

5-3. Углы в тетраэдре

Угол между связями Н—С—Н в молекуле метана составляет 109°28′. Для сравнения можно вычислить соответствующий угол в правильном тетраэдре, пользуясь

Рис. 64. Кубическая модель для определения угла в тетраэдре.

обычными тригонометрическими соотношениями. Пусть молекула CH₄ находится в центре куба, изображенного на рис. 64. С помощью теоремы Пифагора определяем длины отрезков, соответствующих связям C—H_a и C—H_b, и угол θ между ними. В результате получаем

$$\cos\frac{\theta}{2} = \frac{\sqrt{3}}{3}$$
 или $\theta = 109^{\circ}28'$. (132)

5-4. Молекула СНа в методе валентных связей

Объединяя атомные орбитали 2s, $2p_x$, $2p_y$ и $2p_z$, можно получить четыре эквивалентные орбитали, локали

Рис. 65. Образование четырех гибридных *sp*³-орбиталей.

Рис. 66 Строение молекулы СН₄ по методу валентных связей.

зованные на атоме углерода. Такие орбитали носят название гибридных *sp*³-орбиталей; схематически они показаны на рис. 65. Каждая такая гибридная *sp*³-орбиталь на ¹/₄ имеет s- и на ³/₄ — *p*-характер. Четыре *sp*³-орбитали направлены к углам правильного тетраэдра и, следовательно, полностью пригодны для образования четырех локализованных связывающих орбиталей с четырьмя *ls*-орбиталями атомов водорода. Структура молекулы CH₄ в методе BC показана на рис. 66.

Упражнение

5-1. Ниже приведены пормированные волновые функции четырех эквивалентных гибридных *sp*³-орбиталей (в системе координат, принятой на рис 65):

$$\begin{split} &\psi(sp_a^3) = \frac{1}{2}s + \sqrt{\frac{3}{4}}(p_x + p_y + p_z), \\ &\psi(sp_b^3) = \frac{1}{2}s + \sqrt{\frac{3}{4}}(-p_x - p_y + p_z), \\ &\psi(sp_c^3) = \frac{1}{2}s + \sqrt{\frac{3}{4}}(p_x - p_y - p_z), \\ &\psi(sp_d^3) = \frac{1}{2}s + \sqrt{\frac{3}{4}}(-p_x + p_y - p_z). \end{split}$$

Используя процедуру, описанную в упражнении 4-1, покажите, как получаются эти волновые функции.

5-5. Другие тетраэдрические молекулы

Элементы группы углерода (углерод, кремний, германий, олово и свинец) легко образуют четыре σ-связи с четырьмя присоединенными атомами. Центральный атом в таких молекулах имеет тетраэдрическое окружение. Связи образуются за счет одной *s* и трех *p* валентных орбиталей центрального атома и соответствующей валентной орбитали каждого из четырех окружающих атомов.

Тетраэдрическое строение характерно для целого ряда кислородсодержащих анионов, в частности SO_4^{2-} и ClO_4^{-} . В табл. 20 приводятся свойства некоторых представителей группы тетраэдрических молекул

Свойства тетраэдрических молекул а

ия связи Еср (кал/моль	Энергия <i>кк</i>	Межатомное расстояние, Å	Связь	Молекула
101 (D)	1	1,093	CH ₃ —H	CH₄
99,3			C—H	
116	1	1,36	C—F	CF ₄
78,2		1,761	CC1	CCI ₄
< 50 (D)	<	1,942	CBr ₃ —Br	CBr ₄
76		1,480	Si-H	SiH ₄
135	1	1,54	Si – F	SiF ₄
91		2,02	Si – Cl	SiCl ₄
74		2,15	Si – Br	SiBr ₄
56		2,43	Si—l	Sil ₄
72		1,93	Si-C	Si (CH ₃) ₄
60		• • •	SI-C	Si (C_2H_5) ,
81		2,08	Ge-Cl	GeCl ₄
66		2,32	Ge-Br	GeBr ₄
51		2,48	Ge—I	Gel ₄
76		2,30	Sn—C1	SnCl ₄
65		a 10	Sn—Br	SnBr ₄
		2,18	SnC	$\operatorname{Sn}(\operatorname{CH}_3)_4$
54		0.00	Sn-C	$\operatorname{Sn}(C_2H_5)_4$
		2,30	РБ-С	$PD(CH_3)_4$
31			PD-C	PD $(C_2 \Pi_5)_4$
		1,49	S0	SO_4^{2-}
		1,44	CI—O	CIO ₄
		1,03	N—H	NH ⁺
		1,22	B—H	BH ₄
		1,43	B-F	BF ⁻
		1,43	B-F	BF,

^a Cottrell T. L., The Strengths ο Chemical Bonds, Butterworths Scientific Publications, London, 1958, ταδπ. 11.5.1.

Дополнительные упражнения

1. Опншите связь в молекуле CF₄ в терминах МО и постройте диаграмму энергетических уровней МО. Вокруг какого ядра или каких ядер электроны σ^{св}-орбиталей проводят больше времени? Можно ли ожидать, что связи С— F имеют частично ионный характер? Чему равен дипольный момент молекулы CF₄? Ответ поясните.

2. При каких условиях описание молекулы СН₄ методами МО и ВС совпадает? Постройте связывающие волновые функции валентных связей, изображенных на рис. 66, пользуясь уравнениями (126), (127) и (130).

3. Какую структуру имеют поны ВН₄⁻ и NH₄⁺? Можно ли описать эти молекулы с помощью орбигалей молекулы СН₄? Какой частично понный характер можно ожидать у связей В—Н, С—Н, N—Н? Оцените коэффииненты в уравнениях (124) и (131) для молекул ВН₄⁻, СН₄ и NH₄⁺.

МОЛЕКУЛЫ, ИМЕЮЩИЕ ФОРМУ ТРИГОНАЛЬНОЙ ПИРАМИДЫ

6-1. Молекула NH₃

Типичным примером молекулы, построенной в виде тригональной пирамиды, является молекула аммиака NH₃. Эта молекула изображена на рис. 67. Три атома водорода находятся в плоскости x, y и образуют основание тригональной пирамиды, в вершине которой расположен атом азота. Линиш связей N—H образуют с осью z угол θ Кроме того, проекция связи N—H_a совпадает с осью x, а проекции связей N—H_b и N—H_a совпадает с осью x, а проекции связей N—H_b и N—H_c образуют угол 30° с осью y (соответственно с положительным и отрицательным ее направлениями). Таким образом, проекция молекулы NH₃ на плоскость x, y напоминает плоскую треугольную молекулу (сравните с рис. 49), но центральный атом расположен выше этой плоскости.

Связи в молекуле NH₃ образуются за счет валентных 1s-орбиталей атомов водорода и 2s- и 2p-орбиталей атома азота. Начнем рассмотрение со связей 1s—2p.

На рис. 68 показано перекрывание $2p_z$ -орбитали атома азота с тремя 1*s*-орбиталями атомов водорода. Для обеспечения такого перекрывания пригодна комбинация $(1s_a + 1s_b + 1s_c)$. Соответствующие σ_z -МО имеют вид

$$\psi(\sigma_{z}^{cB}) = C_{1}2p_{z} + C_{2}(1s_{a} + 1s_{b} + 1s_{c}), \qquad (133)$$

$$\Psi(\sigma_z^{\text{pasp}}) = C_3 2 p_z - C_4 (1s_a + 1s_b + 1s_c).$$
(134)

Перекрывание орбитали $2p_y$ с $1s_a$ и $1s_b$ показано на рис. 69. Ему соответствует комбинация ($1s_b-1s_c$) и следующие σ_y -МО:

$$\psi(\sigma_y^{c_B}) = C_5 2 p_y + C_6 (1s_b - 1s_c), \qquad (135)$$

$$\psi(\sigma_y^{\text{rasp}}) = C_7 2 p_y - C_8 (1 s_b - 1 s_c).$$
(136)

На рис. 70 показано перекрывание $2p_x$ -орбитали с орбиталями $1s_a$, $1s_b$ и $1s_c$. Поскольку $1s_b$ и $1s_c$ образуют угот 60° с отрицательным направлением оси *x*, величина их перекрывания с $2p_x$ составляет только поло-

 $2p_x + 1s_a - 1s_b - 1s_c$

Рис. 70. Перекрывание 2*р*, орбиталей атома азота с 1*s*-орбиталями атомов водорода.

вину $\left(\cos 60^{\circ} = \frac{1}{2}\right)$ величины перекрывания $1s_a$ с $2p_x$ (см. раздел 4-2). Этому отвечает комбинация $\left(1s_a - \frac{1}{2}1s_b - \frac{1}{2}1s_c\right)$. σ_x -МО представляют собой

$$\psi(\sigma_x^{\rm CB}) = C_9 2p_x + C_{10} \left(1s_a - \frac{1}{2} 1s_b - \frac{1}{2} 1s_c \right), \qquad (137)$$

$$\Psi(\sigma_x^{\text{pasp}}) = C_{11} 2p_x - C_{12} \left(1s_a - \frac{1}{2} 1s_b - \frac{1}{2} 1s_c \right).$$
(138)

10 Г. Грей
6-2. Перекрывание в σ_x -, σ_y - и σ_z -МО

Интегралы перекрывания в σ_x -, σ_y - и σ_z -МО нетрудно вычислить. Непосредственное перекрывание валентных 2*p*- и 1*s*-орбиталей показано на рис. 71. Обозначим его

Рис. 71. Непосредственное о-перекрывание между *s*и *p*-орбиталями.

величину $S(1s, 2p_{\sigma})$. Все остальные интегралы перекрывания можно выразить через $S(1s, 2p_{\sigma})$:

$$\begin{split} S(\sigma_z) &= \int 2p_z \frac{1}{\sqrt{3}} (1s_a + 1s_b + 1s_c) d\tau = \\ &= \frac{1}{\sqrt{3}} [\cos \theta S(1s, 2p_{\sigma}) + \cos \theta S(1s, 2p_{\sigma}) + \\ &+ \cos \theta S(1s, 2p_{\sigma})] = \sqrt{3} \cos \theta S(1s, 2p_{\sigma}), \end{split}$$
(139)
$$S(\sigma_y) &= \int 2p_y \frac{1}{\sqrt{2}} (1s_b - 1s_c) d\tau = \\ &= \frac{1}{\sqrt{2}} [\cos 30^\circ \sin \theta S(1s, 2p_{\sigma}) + \\ &+ \cos 30^\circ \sin \theta S(1s, 2p_{\sigma})] = \sqrt{\frac{3}{2}} \sin \theta S(1s, 2p_{\sigma}), \end{aligned}$$
(140)
$$S(\sigma_x) &= \int 2p_x \sqrt{\frac{2}{3}} (1s_a - \frac{1}{2} 1s_b - \frac{1}{2} 1s_c) d\tau = \\ &= \sqrt{\frac{2}{3}} [\sin \theta S(1s, 2p_{\sigma}) + \cos 60^\circ \sin \theta S(1s, 2p_{\sigma}) + \\ &+ \cos 60^\circ \sin \theta S(1s, 2p_{\sigma})] = \sqrt{\frac{3}{2}} \sin \theta S(1s, 2p_{\sigma}) + \\ &+ \cos 60^\circ \sin \theta S(1s, 2p_{\sigma})] = \sqrt{\frac{3}{2}} \sin \theta S(1s, 2p_{\sigma}). \end{aligned}$$
(141)

147

Важно отметить, что из уравнений (139), (140) и (141) следует эквивалентность σ_x - и σ_y -MO; следовательно, их энергии при любом значении угла θ должны быть равны между собой. В случае, когда угол $\theta = 90^\circ$,

Рис. 72. Геометрические соотношения в молекуле NH₃ при условии, что угол H—N—H равен 90°.

молекула становится плоской треугольной (см. раздел 4-5), и для нее

$$S(\sigma_z) = 0,$$

$$S(\sigma_y) = S(\sigma_x) = \sqrt{\frac{3}{2}} S(1s, 2p_{\sigma}).$$

Рассмотрим теперь случай, когда угол между связями Н—N—Н равен 90° (на рис. 67 угол $\phi = 90^{\circ}$). Приняв расстояние N—H_a за единицу, определим остальные расстояния из геометрических соотношений (рис. 72). Поскольку $\phi = 90^{\circ}$, $\cos \theta = \frac{\sqrt{3}}{3}$ и $\sin \theta = \sqrt{\frac{2}{3}}$. Таким образом, уравнения (139), (140) и (141) сводятся к виду

$$S(\sigma_z) = S(\sigma_y) = S(\sigma_x) = S(1s, 2p_{\sigma}).$$
(142)

Иначе говоря, в случае, когда $\phi = 90^{\circ}$, молекулярные орбитали σ_x , σ_y и σ_z становятся одинаковыми. Это неудивительно, так как атомные орбитали $2p_x$, $2p_y$ и $2p_z$

Рис. 73. Схема образования связей в молекуле NH₃ с участием только 2*p*-орбиталей атома азота.

расположены под углом 90° друг к другу, а при условии $\phi = 90^{\circ}$ орбитали 1s можно расположить вдоль осей x, y и z, как это показано на рис. 73. Орбиталь каждого атома водорода перекрывается с одной 2p-орбиталью азота, как это и следует из уравнения (142). При любом другом значении угла ϕ интеграл перекрывания в σ_x , σ_u и σ_z -MO становится меньше.

6-3. Отталкивание между элекгронами и углы между связями H--N-- H в молекуле NH₃

Угол между связями Н—N—Н в молекуле аммиака в действительности равен 107°, т. е. на 17° больше угла, отвечающего наивыгоднейшему перекрыванию 2*p*- и 1*s*орбиталей. Можно думать, что такое отклонение обусловлено взанмным отталкиванием трех пар электронов

Рис. 74. Перекрывание 2*s*-орбитали атома азота с 1*s*-орбиталями атомов водорода.

на связывающих σ-орбиталях и одной несвязывающей пары электронов (так называемой неподеленной пары). Вследствие этого четыре пары электронов стремятся расположиться в пространстве таким образом, чтобы действие сил отталкивания сводилось к минимуму В частности, уменьшению взаимного отталкивания может способствовать включение в связывающие МО валентной 2s-орбиталн атома азота. Перекрывание 1s-орбиталей с 2s-орбиталью азота показано на рис. 74. Пригодная для такого перекрывания комбинация ls-орбигалей представляет собой $(1s_a+1s_b+1s_c)$, т. е. комбинацию, использованную для образования σ_z -MO [уравнения (133) и (134)].

Таким образом, в σ_z^{cb} - и σ_z^{pasp} -МО появляется «примесь» σ_s -орбитали, в результате чего образуются три новые МО, которые можно обозначить как σ_z^{ch} , σ_z и σ_z^{pasp} .

Рис. 75. Строение молекулы NH₃ по методу валентных связей с использованием гибридных sp³-орбиталей атома азота.

Примесь 2s-характера в связях N— Н приводит к увеличению угла H—N—H от 90 до 107°. Расширение угла иронсходит следующим образом. Наилучший угол для чистых 2p-связей равен 90°. Наиболее выгодный угол для чистой 2s-связи равен 120°, так как наилучшее расположение трех 1s-орбиталей атомов водорода вокруг 2s-орбитали отвечает плоскому равностороннему треугольнику (ls-орбитали располагаются при этом дальше всего друг от друга, но не достигают такого же полного перекрывания с 2s-орбиталью, как и с 2p.) В результате такого включения 2s-характера в «чистые» 2p-связи и происходит расширение угла H—N—H.

Рассматривая молекулу NH₃ методом BC, можно прийти к выводу, что три локализованные связывающие пары и одна неподеленная пара электронов образуют четыре равноценные *sp*³-орбитали, направленные к вершинам тетраэдра. При таком расположении достигается наибольшее удаление всех четырех пар электронов друг от друга. Такое тетраэдрическое строение молекулы NH₃ показано на рис. 75. Некоторое отклонение угла N—H—H от тетраэдрического (107° вместо 109°28') рассматривается как следствие неэквивалентности связывающих и несвязывающей пар электронов.

6-4. Углы между связями в других молекулах, построенных в виде тригональной пирамиды

Углы Н—Р—Н и Н—Аs—Н в молекулах РН₃ и AsH₃ составляют соответственно 94 и 92°. По-видимому, это указывает на значительно большее участие *p*-орбиталей фосфора и мышьяка в трех связывающих МО.

Таблица 21

Молекула АВ ₃	Угол В—А—В, град	Межатомное рас- стояние А—В, Å	Энергия связи А-В Е _{ср} , ккал/моль
NH_{3} NF_{3} NCI_{3} PH_{3} PF_{3} PCI_{3} PBr_{3} PI_{3}	107 103 94 104 100 100	1,014 1,37 1,42 2,04 2,20 2,47	93,4 65 46 77 117 78 63 44
AsH_3	92	1,52	59
ASP3 AsCl3 AsBr3 AsI3 SdCl3 BiCl3 Bi (CH3)3	102 98 104	1,71 2,16 2,33 2,54 2,48 2,48 2,30	70 58 43 67 67 31

Свойства молекул, построенных в виде тригональной пирамиды ^а

151

^a Cottrell T. L. The Strengths of Chemical Bonds, Butterworths Scientitic Publications, London, 1958, ra61 11.51.; Sutton L. E., Ed., Interatomic Distances, Special Publication № 11, The Chemical Society, London, 1958.

Можно полагать, что при переходе от атома азота к фосфору и мышьяку взаимное отталкивание связывающих электронных пар должно заметно уменьшаться. Это предположение вполне разумно, так как из спектральных данных для атомов азота, фосфора и мышьяка следует, что взаимное отталкивание валентных электронов на *p*-орбиталях уменьшается в ряду N>P>As. Тригалогениды азота, фосфора, мышьяка, сурьмы и висмута также построены в виде тригональной пирамиды. Во всех молекулах этого ряда валентный угол находится в пределах от 95 до 105° (см. табл. 21).

6-5. Основное состояние молекулы NH₃

Схема энергетических уровней МО молекулы аммиака приведена на рис. 76. Орбитали σ_x и σ_y энергетически вырождены. При наличии восьми валентных электронов конфигурация основного состояния представляет собой

 $(\sigma_s^{cb})^2 (\sigma_x^{cb})^2 (\sigma_y^{cb})^2 (\sigma_z)^2, \qquad S = 0.$

Таким образом, формально в молекуле NH_3 имеются три σ -связи Расстояние N-H равно 1,014 Å, средняя энергия связи N-H составляет 93,4 *ккал/моль* Электроны, находящиеся на связывающих MO, проводят около атома азота больше времени, чем около атомов водорода. Это означает, что в основном состоянии на атоме азота находится небольшой отрицательный, а на агомах водорода — небольшие положительные заряды. Таким образом, каждая связь N-H обладает некоторым дипольным моментом (рис. 77). Составляя векторную сумму трех дипольных моментов связей, можно потучить дипольный момент молекулы NH_3 . Следует учесть, однако, что полная величина дипольного момента молекулы NH_3 , равная 1,46 D, включает также и момент неподеленной пары электронов на σ_z -орбитали (см. рис. 77).

Дипольные моменты некоторых молекул, построенных в виде тригональной пирамиды, приведены в табл. 22.

Рис. 77. Векторные составляющие дипольного момента NH₃.

1 ad Auga 22

молекул, построенных в виде тригональной пирамиды ^а			
Молекула	Дипольный момент, D		
NH ₃	1,47		
NF_3	0,23		
PH ₃	0,55		
PF_3	1,03		
PCI ₃	0,79		
PBr_3	0,61		
AsH ₃	0,15		
AsF_3	2,82		
AsC1 ₃	1,99		
AsBr ₃	1,67		
Asl	0,97		
SbC1 ₃	3,93		
$SbBr_3$	2,48		
SbI ₂	1,59		

Пирольные моменты некоторых

^a M c C l e l l a n A. L., Tables of Experimental Dipole Moments, Freeman, San Francisco, 1963

Дополнительные упражнения

1. Почему дипольный момент молекулы NH₃ больше, чем дипольный момент молекулы PH₃? Почему диполь-ный момент PF₃ больше, чем дипольный момент PCl₃?

2. Как построены ионы СН3 и Н3О+? Рассмотрите характер связей в этих ионах.

УГЛОВЫЕ ТРЕХАТОМНЫЕ МОЛЕКУЛЫ

7-1. Молекула H₂O

Наиболее простым примером угловой трехатомной молекулы является молекула воды Н₂О. Известно, что валентный угол Н—О—Н в этой молекуле равен 105°.

Рис. 78. Система координат для молекулы H₂O.

Для нахождения МО молекулы H_2O удобно совместить начало координат с атомом кислорода, а атомы водорода расположить в плоскости x, z (рис. 78). Конфигурацию молекулы H_2O можно представить следующим образом Поместим атомы водорода на оси z по обе стороны от атома кислорода. Будем поворачивать обе связи $O-H_a$ и $O-H_b$ в плоскости x, z одновременно до тех пор, пока угол H-O-H (угол θ) не станет равным 105°. Удобно отвести каждый атом водорода на одинаковое расстояние от оси z так, чтобы ось x делила угол

Рис. 79. Перекрывание 2*p*_z-и 2*p*_x-орбиталей атома кислорода с 15-орбиталями атомов водорода.

θ пополам. Подобное построение можно применить для любой угловой трехатомной молекулы, независимо от величины угла θ. Для нахождения σ-МО указанная система координат весьма удобна.

Валентными в данной молекуле являются 2s- и 2pорбитали атома кислорода и 1s-орбитали атомов водорода. На рис. 79 показано перекрывание 2*p*-орбиталей с двумя 1*s*-орбиталями. Такому перекрыванию отвечает следующий набор волновых функций:

$$\psi(\sigma_x^{\rm CB}) = C_1 2 p_x + C_2 (1s_a + 1s_b), \qquad (143)$$

$$\psi(\sigma_x^{\text{pasp}}) = C_3 2 p_x - C_4 (1 s_a + 1 s_b), \qquad (144)$$

$$\psi(\sigma_z^{c_B}) = C_5 2 p_z + C_6 (1 s_a - 1 s_b), \tag{145}$$

$$\psi(\sigma_z^{\text{pasp}}) = C_7 2 p_z - C_8 (1 s_a - 1 s_b).$$
(146)

2p_y-Орбиталь атома кислорода не перекрывается ни с ls_a, ни с ls_b и, таким образом, является в нашей

Рис. 80. Перекрывание 2s-орбитали атома кислорода с 1s-орбиталями атомов водорода.

схеме несвязывающей. Отметим, что 2*p*_y пригодна для образования л-связи, однако атомы водорода не имеют валентных л-орбиталей.

На рис. 80 показано перекрывание 2*s*-орбитали с $1s_a$ и $1s_b$. Для составления соответствующей волновой функции (σ_s -MO) пригодна та же комбинация ($1s_a + 1s_b$), которая используется и в σ_x -MO. Благодаря этому в MO σ_x должна появиться «примесь» орбитали σ_s . В результате образуются три новые МО: связывающая орбиталь, орбиталь почти не связывающая и разрыхляющая. Мы обозначим эти МО символами σ_s^{cs} , σ_x и σ_x^{pa3p} соответственно.

Рис. 81. Энергетические уровни орбиталей молекулы H₂O.

На рис. 81 показана схема энергетических уровней МО. Атомная 1*s*-орбиталь водорода расположена выше атомных 2*s*- и 2*p*-орбиталей кислорода. Можно заметить, что σ_z^{cs} -МО более устойчива, чем σ_x -МО, вследствие взаимодействия σ_x с σ_s^{cs} .

7-2. Основное состояние молекулы Н₂О

В молекуле воды имеется восемь валентных электронов: два от каждого атома водорода и шесть электронов (2s²2p⁴) атома кислорода. Основное состояние представляет собой

$$(\sigma_s^{\rm CB})^2 (\sigma_z^{\rm CB})^2 (\sigma_x)^2 (\pi_y)^2, \qquad S = 0.$$

Заметим, что все электроны спарены и молекула H_2O диамагнитна. Четыре электрона двух σ^{cB} -MO обеспечивают две σ -связи.

Рис. 82. Схема образования связей в молекуле H₂O с участием только 2*p*-орбиталей атома кислорода.

Если бы в образовании σ -связей принимали участие только атомные орбитали $2p_x$ и $2p_z$, то можно было бы ожидать, что валентный угол равен 90°. При этом орбитали $2p_x$ и $2p_z$ должны одинаково перекрываться с орбиталями атомов водорода. Легко видеть, что атомы водорода в этом случае должны находиться на осях x и z(рис 82). Одно из возможных объяснений отклонения валентного угла от прямого угла на 15° состоит в том, что в связывании принимает участие также и 2s-орбиталь. Можно наглядно продемонстрировать такое увеличение валентного угла, если разместить восемь ва-

Рис. 83. Строение молекулы H_2O по методу валентных связей с использованием гибридных sp^3 -орбиталей атома кислорода.

электронов (аналолентных гично молекуле NH₃) на четырех гибридных sp3-орбиталях, как это показано на рис. 83. Тот факт, что угол в молекуле H₉O оказывается меньше 109°. можно рассматривать как результат различия отталки-В вании электронных пар на связывающих и несвязывающих орбиталях. Поскольку неподеленные пары электронов более склонны к отталкиванию, чем пары на связывающих MO. VГОЛ между последними несколько уменьшается, достигая 105°.

Валентный угол в молекуле H₂S значительно ближе к 90°,

т. е. к величине, ожидаемой в случае чистых *р*-связей, и составляет 92°. Связь в этой молекуле, вероятно, значительно ближе к чистой 3*р* — 1*s*-связи. Это хорошо

согласуется с тем фактом, что взаимное отталкивание электронов на 3*p*-орбитали атома серы слабее, чем отталкивание электронов на 2*p*-орбитали атома кислорода.

Вследствие различия в электроотрицательности атомов водорода и кислорода электроны на *б*^{св}-МО молекулы H₂O

Рис. 84. Распределение зарядов в основном состоянии молекулы H₂O.

проводят в области атома кислорода больше времени, чем вблизи атомов водорода. Благодаря этому в основном состоянии молекулы H₂O на атомах водорода появляется частичный положительный, а на атоме кислорода — отрицательный заряд (рис. 84).

Дипольный момент молекулы H₂O равен 1,844 D. Как вилно из рис. 85. величина этого дипольного момента

Рис. 85. Векторные составляющие дипольного момента молекулы Н₂О.

определяется не только моментами связей, но и наличием у атома кислорода двух неподеленных пар электронов. Дипольный момент каждой связи О-Н, возникающий за счет разделения зарядов (Об- — Нб+), имеет

Таблина 23

трехатомных молекула		
Дипольный момент,		
1,844		
0,92		
SO ₂ 1,633		
0,39		
0,52		

Дипольные моменты некоторых угловых

^a M c C I e I I a n A. L., Tables of Experimental Dipole Moments, Freeman, San Francisco, 1963

сравнительно небольшую величину. Однако вследствие того, что молекула H₂O нелинейна, моменты связей при суммировании дают результирующий дипольный момент.

В табл. 23 приведены значения дипольных моментов некоторых угловых трехатомных молекул.

7-3. Угловые трехатомные молекулы с π-связями. Молекула NO₂

Примером угловой трехатомной молекулы с σ - и π связями является молекула NO₂. При выборе системы координат совместим ее начало с атомом азота, а атомы

Рис. 86. Система координат для молекулы NO₂.

кислорода расположим в плоскости x, z симметрично относительно оси x. Валентный угол О—N—O обозначим θ .

При определении молекулярных орбиталей мы будем учитывать валентные 2s- и 2p-орбитали атома азота и 2p-орбитали атомов кислорода.

Рис. 87. Комбинации атомных орбиталей, входящих в π-МО молекулы NO₂.

7-4. σ-Орбитали

σ-МО образуются за счет валентных 2s-, 2 p_x - и $2p_z$ орбиталей азота и орбиталей $2p_{z_a}$ и $2p_{z_b}$ атомов кислорода. Такие σ-орбитали полностью аналогичны орбиталям молекулы H₂O. Энергия этих МО возрастает в последовательности $\sigma_s^{c_B}$, $\sigma_z^{c_B}$, σ_x , σ_z^{pasp} , σ_x^{asp} (см. рис. 86).

7-5. π-Орбитали

 $2p_y$ -Орбиталь азота перекрывается с $2p_{y_a}$ - и $2p_{y_b}$ -орбиталями атомов кислорода (см. рис. 87). При сложении этих орбиталей получается связывающая МО:

$$\psi(\pi_{y}^{c_{B}}) = C_{1}2p_{y} + C_{2}(y_{a} + y_{b}).$$
(147)

Разрыхляющая МО имеет узлы между атомом азота и атомами O_a и O_b :

$$\psi(\pi_y^{\text{pasp}}) = C_3 2 p_y - C_4 (y_a + y_b).$$
(148)

Существует вторая комбинация атомных орбиталей O_a и $O_b (2p_{y_a} - 2p_{y_b})$. Эта комбинация не перекрывается с $2p_y$ -орбиталью азота и поэтому представляет собой несвязывающую МО:

$$\psi(\pi_y) = \frac{1}{\sqrt{2}} (y_a - y_b). \tag{149}$$

2*p*_x-Орбитали обоих атомов кислорода также являются несвязывающими. Приближенная схема энергетических уровней всех МО молекулы NO₂ показана на рис. 88.

7-6. Основное состояние молекулы NO2

В молекуле NO₂ содержится семнадцать валентных электронов — пять электронов азота и по шесть электронов от каждого из двух атомов кислорода. Размещая их на MO, приведенных на рис. 88, получаем следующую конфигурацию основного состояния:

$$(2s_a)^2 (2s_b)^2 (\sigma_s^{_{\rm CB}})^2 (\sigma_z^{_{\rm CB}})^2 (\pi_y^{_{\rm CB}})^2 (2p_{x_a})^2 (2p_{x_b})^2 (\pi_y)^2 (\sigma_x), \qquad S = \frac{1}{2}.$$

Рис. 88. Энергетические уровни орбиталей молекулы NO2.

12 Г. Грей

Благодаря наличию одного неспаренного электрона молекула NO_2 парамагнитна. Изучение спектра электронного парамагнитного резонанса подтвердило, что неспаренный электрон в основном состоянии молекулы NO_2 находится на σ -MO. Электронная конфигурация основного состояния отвечает формальному наличию двух σ - и одной π -связи. Интересно сравнить полученную схему MO с двумя возможными эквивалентными структурами, которые можно получить для молекулы

Рис. 89. Строение молекулы NO₂ по методу валентных связей.

NO₂, пользуясь методом BC (см. рис. 89). Вследствие резонанса структур I и II π -связь делокализована между всеми тремя атомами, что равноценно одной связывающей молекулярной π -орбитали (рис. 87). Неспаренный электрон находится на одной из гибридных sp^2 -орбиталей, которые аналогичны σ_z -MO. Неподеленная пара на $2p_y$ принадлежит атомам O_a и O_b , что соответствует двум электронам на несвязывающей π_y -MO (см. рис. 87).

Расстояние N — О в молекуле NO₂ составляет 1,20 Å (сравните с расстоянием в молекуле NO, равным 1,13 Å). Этот факт находит объяснение в схеме MO, согласно которой в молекуле NO₂ на каждую связь NO приходится только ¹/₂ связи, а в NO — 1¹/₂ связи. Энергия диссоциации по связи О—NO составляет 72 ккал/моль.

В табл. 24 приведены характеристики связей для ряда угловых трехатомных молекул.

Таблица 24

Молекула АВ2	Угол В-А-В, град	Связь	Межатомное расстояние, Å	Энергия связи, ккалімоль
H₂O	105	НО—Н О—Н	0,958	117,5 (D) $110,6 (E_{cp})$
H_2S	92	H—SH H—S	1,334	90 (D) 83 (E _{cp})
H_2Se H_2Te HOC! HOBr HO! OF_2 $OC!_2$ $C!O_2$	91 90 113 102 115 117	H—Se H—Te HO—CI HO—Br HO—I O—F O—CI OCI—O CI—O	1,47 1,41 1,68 1,484	$\begin{array}{c} 63 \ (E_{cp}) \\ 66 \ (E_{cp}) \\ 57 \ (E_{cp}) \\ 60 \ (D) \\ 56 \ (D) \\ 56 \ (D) \\ 45,3 \ (E_{cp}) \\ 49 \ (E_{cp}) \\ 57 \ (D) \\ 60 \ (E_{cp}) \end{array}$
BrO_2 NO_2 NOCI NOBr SO_2 $SeCI_2$ O_3 NO_2^-	132 116 117 120 117 115	0-BrO Br-O O-NO C1-NO Br-NO S-O Se-C1 O-O N-O	1,20 1,95 2,14 1,43 1,278 1,24	70 (D) 60 (Ecp) 72 (D) 37 (D) 28 (D) 119 (Ecp) 58 (Ecp)

Свойства угловых трехатомных молекул а

^a Cottrell T. L., The Strengths of Chemical Bonds, Butterworths Scientific Publications, London, 1958, табл. 115.1; Sutton L. E., Ed., Interatomic Distances, Special Publication, № 11, The Chemical Society, London, 1958.

Дополнительные упражнения

1. Опишите электронное строение следующих молекул: а) О₃; б) СlO₂; в) СlO₂⁺; г) ОF₂.

2. Какое строение можно ожидать у иона амида NH₂⁺, молекулы SCl₂, молекулы XeF₂?

СВЯЗИ В МОЛЕКУЛАХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

8-1. Введение

Атом углерода обладает замечательной способностью образовывать связи не только с атомами водорода, но и с другими атомами углерода.

Валентными орбиталями углерода являются орбитали 2s и 2p. В случае, если атом углерода образует только σ-связи, он должен иметь тетраэдрическое окружение (за счет гибридных sp³-орбиталей). Характер связи в

Рис. 90. Строение молекулы С₂Н₆ по методу валентных связей

простейшей тетраэдрической молекуле, СН₄, был уже рассмотрен в главе V. Замещая один атом водорода группой — СН₃, получаем молекулу этана С₂Н₆. В этой молекуле имеется, как показано на рис. 90, одна С—Ссвязь. Путем последовательного замещения атомов водорода группами — СН₃ можно построить молекулы разнообразных углеводородов, в которых каждый атом углерода образует четыре освязи за счет своих гибридных *sp*³-орбиталей.

Во многих молекулах органических соединений углерод дает σ-связи только за счет своих двух или трех валентных орбиталей. Остальные атомные орбитали используются для образования π-связей. В настоящем разделе дастся описание характера связей в некоторых важных атомных группировках, содержащих углерод с π-валентными орбиталями.

Таблица 25

Число атомов, присоединен- ных к углеролу	о-Связы- вающие орбигали	Структурное окружение атома углерода
4	s p ³	Тетраэдрическое
3	sp^2	Плоское треу-
2	sp	Линейное

Гибридные орбитали углерода в молекулах органических соединений

В молекулах органических соединений σ -связи атома углерода обычно описываются в рамках метода ВС с помощью гибридных орбиталей, перечень которых приведен в табл. 25. π -Связи рассматривают с помощью молекулярных орбиталей. Схемы энергетических уровпей относятся только к эпергиям π -МО. Такой подход оправдан тем, что σ -связывающие орбитали обычно значительно устойчивее π -связывающих орбиталей. Электроны на π -молекулярных орбиталях химически и спектроскопически значительно более активны.

8-2. Молекула С2Н4

Структура молекулы этилена C_2H_4 показана на рис. 91. Молекула этилена плоская, причем атом углерода связан с двумя атомами водорода и с другим атомом углерода. Поскольку каждый атом углерода окружен тремя агомами, можно считать, что освязи образуются за счет гибридных *sp*²-орбиталей. При этом у каждого атома углерода остается по одной $2p_x$ -орбитали, направленной перпендикулярно плоскости молекулы.

Рис. 92. Граничные поверхности π -МО C_2H_4 .

Их можно использовать для образования связывающей и разрыхляющей MO:

$$\psi(\pi^{c_{\mathsf{B}}}) = \frac{1}{\sqrt{2}} (x_a + x_b), \qquad (150)$$

$$\psi(\pi^{\text{pasp}}) = \frac{1}{\sqrt{2}} (x_a - x_b).$$
(151)

Ha рис. 92 изображены граничные поверхности $\pi^{\mathtt{c}\mathtt{B}}$ и $\pi^{\mathtt{p}\mathtt{a}\mathtt{s}\mathtt{p}}\text{-}MO.$

8-3. Энергетические уровни молекулы С₂Н₁

Энергии π^{cB} и π^{pa3p} -MO вычисляют таким же образом, как и энергин σ^{cB} и σ^{pa3p} -MO в молекуле водорода (см. раздел 2-4):

$$E[\psi(\pi^{c_{B}})] = \int \psi(\pi^{c_{B}}) H\psi(\pi^{c_{B}}) d\tau =$$

= $\frac{1}{2} \int (x_{a} + x_{b}) H(x_{a} + x_{b}) d\tau = q_{c} + \beta_{cc}, \quad (152)$

$$E[\psi(\pi^{\text{pasp}})] = \frac{1}{2} \int (x_a - x_b) H(x_a - x_b) d\tau = q_c - \beta_{cc}.$$
 (153)

Таким образом, схема энергетических уровней π -МО молекулы этилена практически не отличается от схемы σ -МО молекулы водорода. На рпс. 93 приведена такая диаграмма для молекулы C_2H_4 .

8-4. Основное состояние молекулы С₂Н₄

В молекуле C_2H_4 имеется двенадцать валентных электронов — восемь от двух атомов углерода $(2s^22p^2)$ и по одному от каждого из четырех атомов водорода. Как видно из рис. 94, десять из них используются для образования σ -связей, два электрона занимают π -MO. Таким образом, основное состояние представляет собой $(\pi^{c_B})^2$, что отвечает одной π -связи. На рис. 95 дано обычное изображение связи в молекуле C_2H_4

т-Орбитали С_в

 $- O^{2p_{x_a}}$ $- O^{2p_{x_a}}$ $- O^{2p_{x_a}}$ $- O^{2p_{x_a}}$ $- O^{2p_{x_a}}$ $- O^{2p_{x_a}}$

Рис 93. Энергетические уровни л-орбиталей молекулы С₂Н₄.

5 б-связывающих пар = 10 электронов

Рис. 94.
 $\sigma\mathchar`-Cвязи в молекуле <math display="inline">C_2H_4$ по методу валентных связей.

Рис. 95. Общепринятая схема связей в молекуле C₂H₄.

8-5. Молекула этилена с «изогнутыми» связями

Помимо рассмотренного представления о двойной С=-С-связи, как о совокупности σ- и π-связей, ее можно сформулировать также с помощью эквивалентных «изоциутых» («банановых») связей. Построить такие эквивалентные связи можно, напри-

мер, составив следующие линейные комбинации σ^{c_B} и π^{c_B} -МО:

$$\psi_{i} = \frac{1}{\sqrt{2}} \left[\psi \left(\sigma_{cc}^{cB} \right) + \psi \left(\pi_{cc}^{cB} \right) \right], \quad (154)$$
$$\psi_{2} = \frac{1}{\sqrt{2}} \left[\psi \left(\sigma_{cc}^{cB} \right) - \psi \left(\pi_{cc}^{cB} \right) \right], \quad (155)$$

Эквивалентные орбитали ψ_1 и ψ_2 изображены на рис. 96. Если при составлении функций ψ_1 и ψ_2 использовать в качестве σ -связывающих гибридные sp^2 орбитали (раздел 8-2), го углы H-C-H и H-C-C получаются равными 120°.

Если последовагельно рассматривать молекулу C₂H₁, применяя теорию BC, то все связи должны быть образованы за счет одинаковых *sp*³-орбиталей углерода. Две *sp*³-орбитали используются для связи с атомами во-

Рис. 96. Эквивалентные орбитали в молекуле С₂Н₄, образованные из о^{св}- и л^{св}-орбиталей.

дорода, а с помощью двух других атомы углерода соединяются между собой. Таким образом, молекулу C_2H_4 можно изображать способом, указанным на рис. 97. Валентный угол H—C—H в такой модели составляет 109°28', а угол H—C=C 125°16'.

Истинная величина угла Н—С—Н в молекуле этилена равна 117°. Вследствие плоского строения молекулы угол Н—С=С равен 121,5°. Эти значения намного ближе к величние угла между эквивалентными *sp*²-орбиталями (120°), чем к величинам углов, определяемых тетраэдрической моделью. Однако в некоторых других молекулах с двойной связью С=С угол Х-С=С действительно близок к 125°.

Кратные связи в таких молекулах, как N_2 , H_2CO и C_2H_2 , можно представить либо в виде эквивалентных изогнутых связей, либо как комбинацию связей σ - и

Рис. 97. Эквивалентные орбитали в молекуле C₂H₄, образованные из *sp*³-орбиталей атомов углерода.

л-типа. Для более подробного ознакомления с вопросом об эквивалентных орбиталях рекомендуем обратиться к дополнительной литературе *.

8-6. Характеристика двойной связи С = С

В молекуле этилена имеются связи двух гипов: связи С—Н и связь С=С. Поэтому для получения величины $E_{\rm cp}$ (С=С) необходимо знать величину $E_{\rm cp}$ (С-Н) для пронесса

$$H \xrightarrow{C=C} H \xrightarrow{t} C+C+H+H+H+H.$$
(156)

При вычислении $E_{cp}(C==C)$ значение $E_{cp}(C=-H)$ обычно принимают равным 98,7 *ккал/моль*, что весьма близко к средней энергии связи C-H в молекуте CH_4 .

^{*} Pople J A. Quart. Rev. XI, 273 (1937), Pauling L., Nature of Chemical Bond, Corn. Univ. Press, N. Y, 1960

В табл. 26 приводятся энергии связи и межатомные расстояния для некоторых групп атомов. В тех случаях, когда это не оговорено особо, энергия связи является средней для ряда соединений данного типа.

Таблица 26

Связь	Межатомное расстояние, Å	Энергия связи, ккал/моль
С—Н	1,08	98,7
C—C	1,54	82,6
C=C	1,35	145,8
C=C	1,21	199,6
С—С (в С ₂ Н ₆)	1,543	83 (D)
$C = C (B C_2 H_4)$	1,353	125 (D); 142,9 (E_{cp})
С≡С (в С₂Н₂)	1,207	230 (D), 194,3 (E_{cp})
C—N	1,47	72,8
C==N		147
C==N	1,14	212,6
C-0	l,43	85,5
С=О (в альдегидах)	1,22	176
С=О (в кетонах)	1,22	179
$C = O (B H_2 CO)$	1,21	166
$C-F$ (B CF_4)	1,36	116
С—Si [в Si (CH ₃) ₄]	1,93	72
$C-S$ (B C_2H_5SH)	1,81	65
$C-S$ (B CS_2)	1,55	128
C-Cl	1,76	81
C—Br	1,94 (в CH ₃ Br)	68 (в С ₂ Н ₅ Вг)
С—I (в СН ₃ I)	2,14	51
	1	

Характеристики связей в органических группировках а

^а Соттелл T. L., The Strengths of Chemical Bonds, Butterworths Scientitle Publications, London, 1938, табл. 11,5.1.

Средняя энергия двойной связи С=С составляет 145,8 ккал/моль, что почти вдвое больше величины $E_{\rm cp}$ для ординарной связи С—С (82,6 ккал/моль). Межатомное расстояние С=С заметно меньше по сравнению с расстоянием С—С (1,54 Å) и составляет 1,35 Å.

8-7. Значение β_{cc} в молекуле С₂Н₄

При возбуждении одного электрона с орбитали π^{cn} на π^{pa3p} молекула C_2H_4 переходит в первое возбужденное состояние с конфигурацией (π^{cn}) (π^{pa3p}). Мы уже знаем, что разность эпергий орбиталей π^{cn} и π^{pa3p}) составляет —2 β_{cc} . Такое возбуждение молекулы C_2H_4 происходит при поглощении света с длиной волны, равной 1650 Å. Поскольку длина волны 1650 Å соответствует частоте 60 600 с m^{-1} или эпергии, равной 174 ккал/моль, можно определить величину β_{cc} :

$$-2\beta_{cc} = 60\ 600\ cm^{-1}$$
или 174 ккал/моль,
 $\beta_{cc} = 30\ 300\ cm^{-1}$ или — 87 ккал/моль. (157)

8-8. Молекула формальдегида НеСО

Простейшей молекулой, содержащей двойную связь С=О, является молекула формальдегида H_2CO . Будем считать, что σ -связи в этой молекуле образуются за счет гибридных sp^2 -орбиталей атома углерода. Оставшаяся атомиая $2p_x$ -орбигаль углерода участвует в π -связи с атомом кислорода (см. рис. 98), образуя две π -MO:

$$\Psi(\pi_x^{\rm cB}) = C_1 x_{\rm C} + C_2 x_{\rm O}, \tag{158}$$

$$\psi\left(\pi_{\lambda}^{\text{pasp}}\right) = C_{\lambda}x_{\text{C}} - C_{4}x_{\text{O}}.$$
(159)

Вследствие большей электроотрицательности кислорода можно ожидать, что $(C_2)^2 > (C_1)^2$ и $(C_3)^2 > (C_4)^2$. Поскольку в связях оттипа использованы $2p_2$ -орбитали кислорода, остающиеся $2p_y$ -орбитали являются несвязывающими МО π -типа. Схема энергетических уровней МО молекулы формальдегида приведена на рис. 99.

8-9. Основное состояние молекулы Н₂СО

Рассматриваемая молекула содержит двенадцать валентных электронов: четыре электрона углерода, шесть электронов кислорода $(2s^22p^4)$ и два электрона атомов водорода. Шесть из них участвуют в образовании о-связей, а два электрона на 2s-орбитали кислорода являются

Рис. 99. Энергетические уровни π -орбиталей в молекуле H_2CO .

исподеленной парой. Остаются четыре электрона, которые располагаются на π-орбиталях (рис. 99). Конфигурация основного состояния представляет собой (π^{св}_λ)² (π_y)². Атомы углерода и кислорода связаны одной σ- и одной

Рис. 100. Общепринятая схема связей в молекуле H₂CO.

π-связью. Электронное строение молекулы H₂CO показано на рис. 100.

Карбонильная группа (C=O) встречается во многих органических соединениях — альдегидах, кетонах, сложных эфирах, карбоновых кислотах И амидах. Простейшим кетоном является ацетон $(CH_3)_2C=O$. Энергия связи С=О в Н₂СО равна 166 ккал/моль. При замешении С-Н-связи связью С—С энергия связи С=О возрастает, Средняя энергия связи С=О coставляет в альдегидах 176 ккал/моль. в кетонах 179 ккал/моль. Каждое из этих средних значений бопревышает лее чем влвое величину Еср ординарной

С—О-связи (85,5 ккал/моль). Межатомное расстояние C=O является промежуточным между расстояниями C=O (1,43 Å) и $C\equivO$ (1,13 Å) и составляет 1,22 Å.

8-10. Переходы *n* → π^{разр} карбонильной группы

Поглощение света с длиной волны 2700—3000 Å сопровождается возбуждением электрона с орбитали π_y на орбиталь $\pi_x^{pa \cdot p}$. Вследствие этого карбонильная группа имеет весьма характерный спектр поглощения. Поскольку такие переходы совершаются с несвязывающего уровня на разрыхляющую π -орбиталь, их принято обозначать как переходы $n \to \pi^{pasp}$.

8-11. Молекула ацетилена С2Н2

На рис. 101 изображена структура молекулы ацетилена. За счет гибридных *sp*-орбиталей углерода образуются *σ*-связи, а оставшиеся у каждого атома углерода две взаимно перпендикулярные 2*p*-орбитали участвуют в связях *л*-типа. *л*-МО данной молекулы совершенно

Рис. 101. Система координат для молекулы C₂H₂.

аналогичны соответствующим орбиталям двухатомных гомонуклеарных молекул:

$$\psi(\pi_x^{\rm cB}) = \frac{1}{\sqrt{2}} (x_a + x_b), \qquad (160)$$

$$\psi(\pi_{y}^{_{\text{CB}}}) = \frac{1}{\sqrt{2}} (y_{a} + y_{b}), \qquad (161)$$

$$\psi(\pi_x^{\text{pasp}}) = \frac{1}{\sqrt{2}} (x_a - x_b), \qquad (162)$$

$$\psi\left(\pi_{y}^{\text{pasp}}\right) = \frac{1}{\sqrt{2}} (y_{a} - y_{b}). \tag{163}$$

Схема энергетических уровней л-МО молекулы ацетилена приведена на рис. 102.

8-12. Основное состояние молекулы С₂Н₂

Молекула C_2H_2 содержит десять валентных электронов. Шесть из них образуют ссвязи, а расположение остальных четырех электронов в основном состоянии

отвечает конфигурации $(\pi_x^{cb})^2 (\pi_y^{cb})^2$. Таким образом, два атома углерода связаны тремя связями — одной σ и двума π , как это изображено на рис. 103.

Энергия связи С=С больше энергии связей С-С и С=С, но меньше, чем для С=О, и составляет

Рис. 102 Энергегические уровни орбиталей молекулы C₂H₂.

199,6 *ккал/моль.* Межатомное расстояние С=С равно 1,21 Å, т. е. короче, чем для связей С=С и С-С.

8-13. Молекула СН₃СN

В молекулах органических соединений часто встречается нитрильная группа С=-N. Простейший органический нитрил CH₃CN называется ацетонитрилом; его строение показано на рис. 104. π-Связи группы С=N образуются аналогично π-связям в системе С=C. Энергия связи С=N больше энергии связи С=C (212,6 ккал/моль); расстояние С=N равно 1,14 Å.

8-14. Молекула С₆Н₆

Молекула бензола — плоская, как это показано на рис. 105. Каждый атом углерода связан о-связью с двумя атомами углерода и с одним атомом водорода за

Рис. 103. Общепринятая схема связей в молекуле $C_2 H_2.$

Рис. 104 Общепринятая схема связей в молекуле CH₃CN.
счег своих гибридных sp^2 -орбиталей. Кроме того, у каждого атома углерода остается по одной 2p-орбитали, способной к образованию π -связи (рис. 105). При наличии шести валентных орбиталей можно построить шесть π -MO. Наиболее устойчива связывающая орбиталь, на

Рис. 105. Строение и валентные π -орбитали молекулы C_6H_6

которой плотность электронного облака повышена в области между каждой парой атомов углерода:

$$\Psi(\pi_1^{c_B}) = \frac{1}{\sqrt{6}} (z_a + z_b + z_c + z_d + z_e + z_f). \quad (164)$$

Наименее устойчивой является разрыхляющая МО с узлами между каждой парой атомов углерода:

$$\psi(\pi_3^{\text{pagp}}) = \frac{1}{\sqrt{6}} (z_a - z_b + z_c - z_d + z_e - z_f). \quad (165)$$

Рис. 106. Граничные поверхности л-МО $C_6 H_6$ (вид сверху).

Остальные МО * имеют энергии, промежуточные между энергиями π_1^{ce} и π_3^{pasp} :

$$\Psi(\pi_{2}^{c_{B}}) = \frac{1}{2\sqrt{3}} \left(2z_{a} + z_{b} - z_{c} - 2z_{d} - z_{e} + z_{j} \right), \quad (166)$$

$$\Psi(\pi_{3}^{cb}) = \frac{1}{2} (z_{a} + z_{b} - z_{d} - z_{e}), \qquad (167)$$

$$\Psi(\pi_1^{\text{pasp}}) = \frac{1}{2\sqrt{3}} (2z_a - z_b - z_c + 2z_d - z_e - z_f), \quad (168)$$

$$\psi(\pi_2^{\text{pasp}}) = \frac{1}{2} (z_a - z_b + z_d - z_e).$$
(169)

На рис. 106 изображены различные МО молекулы бензола

8-15. Энергии молекулярных орбиталей С₆Н₆

Как уже указывалось, наиболее устойчивой орбиталью бензола является ψ(π_1^{ce}). Эпергию этой МО вычисляют следующим образом:

$$E\left[\psi(\pi_{1}^{c_{B}})\right] = \int \psi(\pi_{1}^{c_{B}}) H\psi(\pi_{1}^{c_{B}}) d\tau = = \frac{1}{6} \int (z_{a} + z_{b} + z_{c} + z_{d} + z_{e} + z_{j}) H \times \times (z_{a} + z_{b} + z_{c} + z_{d} + z_{e} + z_{j}) d\tau = = \frac{1}{6} \left[6q_{c} + 12\beta_{cc} + 2 \int z_{a}Hz_{c} d\tau + + 2 \int z_{a}Hz_{d} d\tau + 2 \int z_{a}Hz_{e} d\tau + + 2 \int z_{b}Hz_{d} d\tau + 2 \int z_{b}Hz_{e} d\tau + + 2 \int z_{b}Hz_{j} d\tau + 2 \int z_{c}Hz_{e} d\tau + + 2 \int z_{c}Hz_{j} d\tau \right].$$
(170)

Иначе говоря, раскрывая интеграл, мы получаем шесть кулоновских интегралов типа $\int z_a H z_a \, d au$ и двенадцать

^{*} Правила нахождения МО бензола весьма просты, но требуют учета принципов симметрии и оргогональности, которые в настоящей книге не рассматриваются.

обменных интегралов, содержащих соседние *p*-орбитали (типа $\int z_a H z_b d\tau$). Остальные интегралы составлены из *p*-орбиталей атомов углерода, не связанных между собой *σ*-связями (такие, как $\int z_a H z_c d\tau$). Можно полагать, что последние интегралы значительно меньше первых восемнадцати. В часто используемом приближенном методе

Хюккеля эти интегралы принимают равными нулю и, таким образом, получают

$$E[\psi(\pi_1^{cB})] = q_c + 2\beta_{cc}.$$
(171)

Схема энергетических уровней молекулы C₆H₆ приведена на рис. 107.

8-16. Основное состояние молекулы С₆Н₅

В молекуле C_6H_6 имеется тридцать валентных электронов. Двадцать четыре из них участвуют в образовании о-связей (шести связей С—С и шести связей С—Н), остальные шесть находятся на π -MO, изображенных на рис. 107. Основное состояние отвечает конфигурации $(\pi_1^{c_8})^2(\pi_2^{c_8})^2(\pi_3^{c_8})^2$, что соответствует трем полным π -связям. Каждая связь С—С включаег одну полную о-связь и по-

ловину л-связи. Межатомное расстояние С ____ С в бензоле является промежуточным между расстояниями С--С и С=С и составляет 1,397 Å

Структуры Кекуле

Структуры Дьюара

По методу МО

Рис. 108. Общепринятое изображение связей в молекуле C₆H₆.

На рис. 108 показаны наиболее привычные схемы образования связей в молекуле бензола.

8-17. Энергия резонанса в молекуле С₆Н₆

Молекула бензола более устойчива, чем это можно было бы ожидать для системы, содержащей шесть ординарных σ - и три π -связи между атомами углерода. Дополнительная устойчивость этой молекулы обусловлена делокализацией трех π -связей между всеми шестью атомами углерода. Такая делокализация очевидна при рассмотрении молекулярных орбиталей (рис. 106) или структур с валентными связями (рис. 108).

С точки зрения теории МО полный выигрыш энергии за счет образования π-связей определяется в единицах β_{cc} следующим образом:

2	электрона	(на	$\pi_1^{\rm CB}) \cdot 2\beta_{cc} = 4\beta_{cc}$
2	электрона	(на	π_2^{cB} · $\beta_{cc} = 2\beta_{cc}$
2	электрона	(на	$(\pi_3^{\text{CB}}) \cdot \beta_{cc} = 2\beta_{cc}$

Bcero 86cc

Сравним полученную величину с энергией трех изолированных л-связей (для любой из структур Кекуле на рис. 108).

Электрон на π^{cB} -орбитали имеет более низкую энергию, чєм на атомной 2p-орбитали, на β_{cc} (см. раздел 8-3). Для шести электронов на изолированных π^{cB} -орбиталях выигрыш энергии составит $6 \times \beta_{cc} = 6\beta_{cc}$. Таким образом, делокализация трех π -связей в молекуле C_6H_6 повышает устойчивость π -электронной системы на $8\beta_{cc} - 6\beta_{cc} =$ $= 2\beta_{cc}$.

Такова вычисленная величина энергии резонанса в бензоле. Существует еще так называемая экспериментальная энергия резонанса. В случае молекулы бензола она определяется как разность полной энергин всех связей С—С, С=С и С—Н и экспериментально определенной теплогы образования молекулы C_6H_6 . Эта разность показывает, что молекула бензола приблизительно на 40 ккал/моль устойчивее суммы энергий шести С—Н, трех С—С и трех изолированных связей С=С.

Таким образом, значение β_{cc} , вычисленное по экспериментальной энергии резонанса, составляет — 20 ккал/моль. Это значение гораздо меньше величины, определенной на основании спектральных данных для C₂H₄ (—87 ккал/моль). Это является общим правилом: значения β , определенные по энергии резонанса, всегда оказываются значительно меньше спектроскопических.

Дополнительные упражнения

1. Вычислите энергин π-МО молекулы C₂H₂

2. Опишите молекулы C₂H₂, H₂CO, HCN с помощью «изогнутых» связей.

СВЯЗИ С УЧАСТИЕМ ВАЛЕНТНЫХ *d*-орбиталей

9-1. Введение

Известно большое количество структур. в которых центральный атом использует для образования связывающих орбиталей также и свои валентные *d* орбитали. Обычно такие молекулы или нопы имеют форму плоского квадрата, григональной бишрамилы, квадратной пирамиды или октаэдра; примеры таких структур приведены на рис. 109. Особенно устойчивыми валентными *d*-орбиталями обладают атомы или ионы переходных металлов. Не подлежит сомнению, что связи между атомами переходных металлов и различными молекулами и атомами в комплексных соединениях образуются с участием *d*-орбиталей. Настоящая глава посвящена описанию характера связей между атомами металлов и лигандами т в комплексных соединениях различных типов

9-2. Октаэдрический комплексный ион Ті(H2O)₆³⁺

Трехвалентный титан (например, в виде иона Ti³⁺) образует устойчивый комплекс с шестью молекулами воды. Как видно из рис. 110, структурное окружение титана в этом комплексном ноне октаэдрическое.

Атом титана имеет пять 3*d*-, одну 4*s*- и три 4*p*-валентные орбитали, которые могут участвовать в образовании МО. Каждая молекула H_2O предоставляет одну σ -орбиталь, которую можно ориентировочно считать гибридной *sp*³-орбиталью (см. главу VIII). Не уточняя в дальнейшем ее *s*- и *p*-характер, будем рассматривать ее просто как σ орбиталь.

^{*} Лигандами называются атомы или группы атомов, связанные с атомом металла в комплексных соединениях.

Атомными орбиталями титана, способными принимать участие в образовании σ -МО, являются орбитали $3d_{x^2-y^2}$, $3d_{z^2}$, 4s, $4p_x$, $4p_y$ и $4p_z$. Орбиталь 4s по всей

Рис. 109. Примеры структур со связями, образованными с участием *d*-орбиталей.

граннчной поверхности имеет один и тот же знак, поэтому для перекрывания с ней используется следующая линейная комбинация орбиталей лигандов:

$$\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6. \tag{172}$$

3+

Рис. 110. Система координат для иона Ті (H₂O)⁶⁺.

Рис. 111. Перекрывание 4*s*-орбитали атома титана с σ-орбиталями молекул воды

Картина соответствующего перекрывания изображена на рис. 111. Волновая функция в этом случае имеет вид

$$f(\sigma_{3}) = c_{1}4s + c_{2}(\sigma_{1} + \sigma_{2} + \sigma_{3} + \sigma_{4} + \sigma_{5} + \sigma_{6}).$$
(173)

При нахождении остальных МО следует учитывать знаки различных ветвей *p*- и *d*-орбиталей центрального атома. Соответствующая процедура выбора знаков для *σ*-орбиталей лигандов иллюстрирована на рис. 112. Волновые функции представляют собой

$$\psi(\sigma_x) = c_3 4 p_x + c_4 (\sigma_1 - \sigma_3),$$
 (174)

$$\ddagger (\sigma_u) = c_3 4 p_u + c_4 (\sigma_2 - \sigma_4), \tag{175}$$

$$\psi(\sigma_z) = c_3 4 p_z + c_4 (\sigma_5 - \sigma_6), \tag{176}$$

$$\psi(\sigma_{x^2-y^2}) = c_5 \, 3d_{x^2-y^2} + c_6 \, (\sigma_1 - \sigma_2 + \sigma_3 - \sigma_4), \tag{177}$$

$$\psi(\sigma_{z^2}) = c_7 3 d_{z^2} + c_8 (2\sigma_5 + 2\sigma_6 - \sigma_1 - \sigma_2 - \sigma_3 - \sigma_4). \quad (178)$$

9-3. Энергетические уровни иона Ті(H₂O)³-

Как показывает рис. 112, в октаэдрическом комплексе орбитали $4p_x$, $4p_y$ и $4p_z$ эквивалентны друг другу. Соответствующне им σ_x -, σ_y - и σ_z -МО являются энергетически вырожденными. Хотя это и неясно из рис. 112, орбитали $3d_{x^2y^2}$ и $3d_{z^2}$ также эквивалентны друг другу, и образованные с их участием $\sigma_{x^2y^2}$ - и σ_{z^2} -МО также энергетически вырождены. Обоснование эквивалентности атомных орбиталей $3d_{x^2-y^2}$ и $3d_{z^2}$ будет приведено в конце этой главы. Если учесть еще и образование σ_x -орбитали, то можно представить себе следующий полный набор σ -МО в октаэдрическом комплексе: σ_s ; σ_x , σ_y , σ_z ; $\sigma_{x^2-y^2}$, σ_{z^2} .

При построении σ-МО не были использованы три валентные орбитали центрального атома: $3d_{xz}$, $3d_{yz}$ и $3d_{xy}$. Как мы увидим в дальнейшем, эти атомные орбитали расположены таким образом, что способны участвовать только в π -связях. Однако поскольку молекула H_2O не является π -связывающим лигандом, мы будем считать орбитали $3d_{xz}$, $3d_{yz}$ и $3d_{xy}$ в Ti (H_2O)⁸⁺ несвязывающими. Совершенно очевидно, что все три указанные орбитали в октаэдрическом комплексе эквивалентны друг другу и в нашем случае образуют группу вырожденных МО — π_{xz} , π_{yz} н π_{xy} .

Рис. 112. Перекрывание 3*d*- и 4*p*-орбигалей титана с о-орбиталями молекул воды.

Прежде чем перейти к построению днаграммы энергетических уровней иона Ti $(H_2O)_6^{3+}$, следует отметить, что орбиталь σ_{H_2O} более устойчива, чем любая из атомных орбиталей центрального атома. Подобная ситуация в комплексах переходных металлов встречается весьма часто, и обычно на схемах энергетических уровней валентные σ -орбитали лигандов располагаются ниже валентных орбиталей центрального атома. Следует также учесть, что энергия атомных орбиталей переходных металлов обычно возрастает в последовательности nd < (n+1)s < (n+1)p.

Диаграмма энергетических уровней нона $Ti(H_2O)_6^{3^+}$ изображена на рис. 113. Из нее следует, что рассматриваемый нон имеет три набора связывающих и три набора разрыхляющих MO. Уровень несвязывающих $\pi(d)$ орбиталей расположен между уровнями связывающих $\sigma(d)$ - и разрыхляющих $\sigma(d)$ -MO. Относительные энергии трех связывающих групп σ -MO неизвестны. Указанный на рис. 113 порядок расположения MO основан на расчетах, которые в настоящей книге не приводятся.

9-4. Основное состояние иона $Ti(H_2O)_6^{3+}$

Мы должны разместить все валентные электроны на МО, пользуясь диаграммой энергетических уровней (рис. 113). При этом будем считать, что комплекс строится из иона Ti^{3+} и шести незаряженных молекул H₂O. Каждая из шести валентных о-орбиталей молекул воды вносит по два электрона (всего двенаднать электронов). Ион Ti^{3+} имеет только один валентный электрон (3d)¹, так что комплекс содержит тринадцать валентных электронов. Располагая их на МО в соответствии со схемой энергетических уровней (рис. 113), получаем следующее основное состояние пона $Ti(H_2O)_6^{3+}$:

$$(\sigma_s^{_{\rm CB}})^2 (\sigma_{_{\mathcal{X}, \, \mathcal{Y}, \, z}}^{_{\rm CB}})^6 (\sigma_{_{\mathcal{X}^2 - \, \mathcal{Y}^2, \, z^2}}^{_{\rm CB}})^4 (\pi_{_{\mathcal{X}z, \, \mathcal{Y}z, \, \mathcal{X}\mathcal{Y}}})^1, \qquad S = \frac{1}{2} \,.$$

Мы видим, что на $\pi(d)$ -уровне находится один песпаренный электрон. В соответствии с этим пон Ti $(H_2O)_6^{3+}$ парамагнитен с суммарным спином $S = \frac{1}{2}$.

P и с. 113. Энергетические уровни орбитален нона Ti $({\rm H_2O})^{3+}_{\delta}$.

Электроны на σ^{cB} -МО в основном локализованы на молекулах H₂O, поскольку валентные о-орбитали этих молекул значительно устойчивее орбиталей центрального атома. С другой стороны, несвязывающие и разрыхляющие орбитали локализованы главным образом вблизи атома металла. В последующих разделах основное внимание будет уделено молекулярным орбиталям, образованным за счет валентных 3*d*-орбиталей атомов переходных металлов.

9-5. Электронный спектр иона Ti $(H_2O)_{6}^{3+}$

Разность энергий уровней $\sigma^{\text{разр}}(d)$ и $\pi(d)$ обычно обозначается как Δ или 10Dq. Возбуждение электрона с уровня $\pi(d)$ на $\sigma^{\text{разр}}(d)$ сопровождается поглощением

Рис. 114. Спектр поглощения $Ti(H_2O)_6^{3+}$ в видимой области.

света в видимой области спектра. Вследствие этого ион Ti $(H_2O)_6^{3+}$ имеет фиолетово-красную окраску. На рис. 114 приведен спектр поглощения иона Ti $(H_2O)_6^{3+}$. Максимум поглощения отвечает длине волны 4930 Å или частоте 20 300 см⁻¹. Обычно значения Δ выражают в см⁻¹; таким образом, можно сказать, что величина Δ для Ti $(H_2O)_6^{3-}$ равна 20 300 см⁻¹.

Окраска многих других комплексов переходных металлов также обусловлена подобными *d* — *d*-переходами.

9-6. Описание иона $Ti(H_2O)_6^{3\pm}$ методом BC

Систему локализованных связей в ноне Ti(H₂O)₆³⁻ можно составить из шесги эквивалентных гибридных орбиталей, направленных к вершинам октаэдра Для этого используем шесть валентных орбиталей атома титана, способных к о-перекрыванию: $3d_{x^2-y^2}$, $3d_{z^2}$, 4s, $4p_x$, $4p_y$ и $4p_z$. Таким путем получаем шесть гибридных d^2sp^3 орбиталей, каждая из которых имеет на одну треть d-, на одну шестую *s*- и наполовину *p*-характер.

Возвращаясь к рис. 110, составим линейные комбинации валентных d-, s- и p-орбиталей таким образом, чтобы направить их большие ветви в сторону шести лигандов. Сначала образуем орбитали, направленные к лигандам V и VI, и назовем их соответственно ψ_5 и ψ_6 . Для этого можно использовать орбитали металла $3d_{z^2}$, 4sи $4p_z$. Выбрав коэффициенты при этих орбиталях так, чтобы ψ_5 и ψ_6 имели заданный вклад d-, s- и p-функций, получаем следующие функции гибридных орбиталей:

$$\psi_5 = \frac{1}{\sqrt{3}} 3d_{z^2} + \frac{1}{\sqrt{6}} 4s + \frac{1}{\sqrt{2}} 4p_z, \qquad (179)$$

$$\psi_6 = \frac{1}{\sqrt{3}} \, 3d_{z^2} + \frac{1}{\sqrt{6}} \, 4s - \frac{1}{\sqrt{2}} \, 4p_z. \tag{180}$$

Положительный коэффициент при $4p_z$ в ψ_5 позволяет направить большую ветвь этой функции в сторону лиганда V, а отрицательный коэффициент при $4p_z$ в ψ_6 — к лиганду VI.

Орбитали, направленные к лигандам I и III, составляем из атомных орбиталей $3d_{x^2-y^2}$, $3d_{z^2}$, 4s и $4p_x$. Орбитали, направленные к II и IV, образуются из орбиталей $3d_{x^2-y^2}$, $3d_{z^2}$, 4s и $4p_y$. Определение коэффициентов при 4s и 4p не вызывает никаких затруднений. Несколько сложнее распределить одну треть d-характера между $3d_{z^2}$ и $3d_{x^2-y^2}$ для каждой гибридной орбитали. Заметим, что в выражениях (179) и (180) для ψ_5 и ψ_6 орбиталь $3d_{z^2}$ уже использована на две трети. Таким образом, оставшуюся одну треть необходимо равномерно распределить между ψ_1 , ψ_2 , ψ_3 и ψ_4 . Следовательно, каждой из указанных функций необходимо придать на одну двенадцатую характер $3d_{z^2}$ и на одну четверть характер $3d_{x^2-y^2}$. Выбирая знаки коэффициентов в соответствии с направлением большой ветви функции в сторону лиганда, получаем

$$\psi_1 = \frac{1}{2} 3d_{x^2 - y^2} - \frac{1}{\sqrt{12}} 3d_{z^2} + \frac{1}{\sqrt{6}} 4s + \frac{1}{\sqrt{2}} 4p_x, \quad (181)$$

$$\psi_2 = -\frac{1}{2} 3d_{x^2 - y^2} - \frac{1}{\sqrt{12}} 3d_{z^2} + \frac{1}{\sqrt{6}} 4s + \frac{1}{\sqrt{2}} 4p_y, \quad (182)$$

$$\psi_3 = \frac{1}{2} 3d_{x^2 - y^2} - \frac{1}{\sqrt{12}} 3d_{z^2} + \frac{1}{\sqrt{6}} 4s - \frac{1}{\sqrt{2}} 4p_x, \quad (183)$$

$$\psi_4 = -\frac{1}{2} 3d_{x^2 - y^2} - \frac{1}{\sqrt{12}} 3d_{z^2} + \frac{1}{\sqrt{6}} 4s - \frac{1}{\sqrt{2}} 4p_y. \quad (184)$$

Теперь на полученных шести d^2sp^3 -орбиталях можно разместить шесть пар σ -электронов молекул воды. Это соответствует образованию шести локализованных связей. Описаниая здесь схема локализованных валентных связей для нона Ti(H₂O)₆³⁺ в его основном состоянии показана на рис. 115 Необобщенный электрон может занять любую из *d*-орбиталей, не использованных для построения гибридных орбиталей. Соответствующая диаграмма валентных связей изображена на рис. 115.

9-7. Описание иона Ті(H₂O)₆³⁺ с помощью теории кристаллического поля

Рассматривая комплекс переходного металла в рамках теории кристаллического поля, будем считать, что каждый лиганд представляет собой точечный заряд или точечный диполь, а расположение лигандов в поле центрального атома соответствует симметрии данного комплекса. Такая модель изображена на рис. 116. Естественно, что каждый точечный заряд или точечный диполь создает вокруг себя электростатическое поле. Нас будет интересовать влияние электростатического поля на энергетические уровни *d*-орбиталей металла-комплексообразователя.

Проследим за тем, какие изменения произойдут в энергии 3*d*-орбиталей иона Ті³⁺, если поместить его в октаэдрическое поле точечных диполей (молекул воды). Прежде всего благодаря появлению отрицательных зарядов вблизи данного иона энергии всех *d*-орбиталей должны возрасти. Однако более существенным является

то, что энергия двух орбиталей $(3d_{z^2} \ u \ 3d_{x^2-y^2})$, направленных непосредственно в сторону отрицательных зарядов, возрастет на большую величину, чем энергия остальных трех *d*-орбиталей $(3d_{xz}, 3d_{yz} \ u \ 3d_{xy})$, которые направлены в области пространства между отрицатель-

ными зарядами. В результате этого в октаэдрическом кристаллическом поле происходит «расщепление» уровней *d*-орбиталей, как это показано на рис. 117. Расщепление *d*-уровней удобно описывать с помощью теории

Рис. 116. Октаэдрическое поле точечных зарялов

Рис. 117. Раслепление *d*-уровней центрального атома в октаэдрическом поле

групп. Орбитали 3d_{z²} и 3d_{x²-y²} образуют вырожденный ряд, обозначаємый символом *e*, а орбитали 3d_{xz}, 3d_{yz} н

 $3d_{xy}$ — вырожденный ряд t_2 . Разность энергий между е н t_2 обозначается как Δ или 10Dq.

Единственный d-электрон пона Ті³⁺ в основном состоянии находится на более устойчивых орбиталях t_2 . Возбуждение этого электрона с t_2 на e сопровождается появлением в спектре полосы, показанной на рис. 114.

9-8. Соответствие между результатами, полученными с помощью теории молекулярных орбиталей, теории валентных связей и теории кристаллического поля

Теория ВС и теория кристаллического поля позволяют описать различные части общей диаграммы моле-

Рис. 118. Сопоставление теорий МО, ВС и кристаллического поля при описании электронного строения комплексов переходных мегаллов

а – расшенление d-уровней в кристаллическом поле – разность уровней $\sigma^{pa3p}(d; н \pi(d)-MO, \delta - связывающие орбитали в ме$ $тоде BC – <math>\sigma^{cB}$ -MO

кулярных орбиталей (см рис. 118). Образование связывающих о-МО сравнительно хорошо передается в рамках метода ВС с помощью шести гибридных связывающих d^2sp^3 -орбиталей. Однако метод ВС не учитывает возможности образования разрыхляющих орбиталей и, следовательно, непригоден для объяснения электронных спектров комплексных соединений. Найденные с помощью теории кристаллического поля уровии t_2 и *е* соогветствуют $\pi(d)$ - и $\sigma^{\text{разр}}(d)$ -МО. Днаграмма, приведенная на рис. 118, показывает соотношение между результатами применения указанных трех теорий к комплексам переходных металлов.

9-9. Типы л-связывания в комплексных соединениях

Орбитали d_{xz} , d_{yz} и d_{xy} в октаэдрических комплексах могут быть использованы для образования π -связей. Рассмотрим комплекс, в состав которого в качестве ли-

Рис. 119. Перекрывание d_{π} -орбитали центрального атома с четырьмя π -орбиталями лигандов в октаэдрическом комплексе.

гандов входят шесть нонов CI⁻. Как показывает рис. 119, каждая d_{π} -орбиталь центрального атома перекрывается с четырьмя π -орбиталями лигандов. При образовании связывающей МО некоторая часть электронного заряда лиганда CI⁻ переносится на центральный атом. Такую

связь можно назвать л-связью «от лиганда к металлу» (L->M), или донорно-акцепторной л-связью. л-MO, образованные главным образом за счет орбиталей центрального атома, малоустойчивы и являются разрыхляющими.

Рис. 120. Типы л-связей между СN и d_д-орбигалью центрального атома

Если в координационную сферу входят двухатомные лиганды, например CN⁻, то возникает возможность образования л-связей двух разных типов. Возвращаясь к главе II, вспомним, что анион CN⁻ имеет заполненную

 π^{cB-} и пустую π^{pa3p} -MO (см. рис. 120). За счет π^{cB-} орбитали лиганда и орбиталей $3d_{xz}$, $3d_{yz}$, $3d_{xy}$ центрального атома возникает донорно-акцепторная π -связь L \rightarrow M. Но кроме того, электроны на $\pi(d)$ -уровне металла могут быть делокализованы на незанятую π^{pa3p} -орбиталь нона CN⁻, препятствуя накоплению на атоме металла слишком большого отрицательного заряда. Связь этого типа понижает плотность электронов вблизи центрального атома и может быть названа π -связью «от металла к лиганду» (M \rightarrow L). Такую связь часто называют дативной связью. Дативное взаимодействие понижает энергию $\pi(d)$ -уровня и делает его менее разрыхляющим. На рис. 120 изображены оба возможных типа π -связи между d_{π} -орбиталями и CN⁻.

9-10. Плоские квадратные комплексы

Примером плоского квадратного комплекса может служить ион $PtCl_4^{2-}$. На рис. 121 изображена система координат, удобная для рассмотрения характера связи в этом комплексе.

Валентными орбиталями металла, пригодными для образования σ -MO, являются $5d_{x^2-y^2}$, $5d_{z^2}$, 6s, $6p_x$ и $6p_y$ Ясно, что из двух валентных $d\sigma$ -орбиталей орбиталь $5d_{x^2-y^2}$ способна к более эффективному взаимодействию с четырьмя валентными σ -орбиталями лигандов, нежели орбиталь $5d_{z^2}$, поскольку последняя ориентирована главным образом вдоль оси z.

Орбитали $5d_{xz}$, $5d_{yz}$ и $5d_{xy}$ обеспечивают образование π -связей с лигандами. При этом можно заметить, что орбиталь $5d_{xy}$ взаимодействует с валентными π -орбиталями всех четырех лигандов, а эквивалентные друг другу орбитали $5d_{xz}$ и $5d_{yz}$ перекрываются с орбиталями только двух лигандов. На рис. 122 изображено перекрывание всех 5d-орбиталей металла с валентными орбиталями лигандов.

Построим теперь приближенную диаграмму энергетических уровней иона PtCl₄²⁻.

Не пытаясь уточнить расположение всех энергетических уровней, определим энергетические зоны, в которых они могут находиться. Такая упрощенная диаграмма приведена на рис. 123. Наиболее устойчивыми являются связывающие σ -MO, состоящие в основном из σ -орбиталей атомов хлора и в значительной мере локализованные у последних. Выше расположены π -MO, также в большой степени включающие π -орбитали четырех атомов Cl.

Р и с. 121. Система координат для иона $PtCl_4^{2-}$.

Разрыхляющие МО, соответствующие указанным связывающим σ- и π-МО, расположены в средней части диаграммы. Они состоят в основном из валентных 5*d*орбиталей центрального атома.

Наибольшей энергней в этой группе МО, несомненно, обладает сильно разрыхляющая орбиталь $\sigma_{x^2-b^2}^{\text{он}\,p}$. Поскольку атомная орбиталь $5d_{xy}$ взаимодействует со всеми четырьмя орбиталями лигандов (см. рнс. 122). соответствующая ей МО $\pi_{xy}^{\text{он}3,\cdot}$ располагается выше, чем $\pi_{xz}^{\text{разр}}$ и $\pi_{yz}^{\text{раз.}}$. Слабо разрыхляющая МО $\sigma_{z^2}^{\text{разс.}}$, вероятно, находится между $\pi_{xy}^{\text{разр.}}$ и $\pi_{xz,yz}^{\text{разр.}}$. Независимо от расположения МО $\sigma_{z^2}^{\text{разр.}}$ характерной особенностью энергетических уровней плоского квадратного комплекса является то, что одеа из пяти разрыхляющих МО обладает значи-

Рис. 122. Перекрывание валентных *d*-орбиталей центрального атома с валентными орбиталями лигандов в плоском квадратном комплексе.

тельно более высокой эпергией, чем остальные четыре. энергии которых сравнительно близки между собой.

Рис. 123 Энергетические уровни оронталей иона PtCl₄²⁻.

У двухвалентной платины валентными являются восемь 5d-электронов, а у четырех ионов хлора — восемь σ - и шестнадцать π -электронов. Таким образом, основ-

ное состояние нона $PtCl_4^{2-}$ представляет собой $(\sigma^{c_8})^8(\pi)^{16}(\pi^{paap}_{xz,yz})^4(\sigma^{paap}_z)^2(\pi^{paap}_{xy})^2, \quad S=0.$

Комплекс днамагнитен, так как все восемь валентных электронов центрального атома находятся на нанболее устойчивых *d*-уровнях и спарены.

При рассмотрении дапной схемы легко видеть, что для образования плоского квадратного комплекса наплучшей электронной конфигурацией центрального атома является *d*⁸. Это хорошо согласуется с тем фактом, что ионы металлов с валентной конфигурацией *d*⁸, как правило, координируются с четырьмя лигандами, расположенными в вершинах квадрага.

9-11. Тетраэдрические комплексы

Примером тетраэдрического комплекса может служить молекула VCl₄. Система координат для нее приведена на рис. 124. Участие валентных *s*- и *p*-орбиталей

Рис. 124. Система координат для молекулы VCl₄.

в образовании МО тетраэдрической молекулы обсуждалось выше (см. главу V). Для образования σ -МО пригодны валентные 4s- и 4p-орбитали ванадия. Для участия в образовании σ -МО пригодны также $3d_{x2}$ -, $3d_{y2}$ и $3d_{y2}$ -орбитали. В терминах метода ВС из указанных орбиталей можно образовать гибридные sp^3 - и sd^3 -орбитали, направленные к вершинам тетраэдра. Орбитали $3d_{x^2-y^2}$ и $3d_{z^2}$ перекрываются с орбиталями лигандов в меньшей степени и способны лишь к образованию π -MO.

На рис. 125 приведена упрощенная диаграмма энергетических уровней комплекса VCl₄. Наиболее устойчивыми являются связывающие о- и л-уровни, локализованные главным образом на лигандах. Разрыхляющие

Рис 125 Энергетические уровни орбиталей молекулы VCI₄.

MO, образованные в основном за счет 3*d*-орбиталей, распадаются на две группы. Менее устойчива группа MO, в состав которых входят валентные орбитали 3*d*_{x2}, 3*d*_{yz} и $3d_{xy}$, МО на основе $3d_{z^2}$ и $3d_{x^2-y^2}$ несколько более устойчивы. Разность энергий уровней $\sigma^{\text{разр}}(d)$ и $\pi^{\text{разр}}(d)$ в тетраэдрическом комплексе обозначим Δ_t .

Размещая двадцать четыре валентных электрона лигандов (8σ и 16π) и один валентный электрон четырехвалентного ванадия ($3d^1$), получаем следующее основное состояние:

 $[\sigma^{c_B}]^8 [\pi]^{16} [\pi^{pa3p}(d)]^1, \qquad S = \frac{1}{2}.$

В соответствии с полученным результатом молекула VCl4 парамагнитна и содержит один необобщенный электрон.

Возбуждение электрона с уровня $\pi^{\text{разр}}(d)$ на $\sigma^{\text{разр}}(d)$ сопровождается поглощением света с длиной волны 9000 см⁻¹. Таким образом, разность энергий Δ_t для VCl₄ равна 9000 см⁻¹.

9-12. Значение Δ

Величина расщепления уровней МО, образованных за счет валентных d-орбиталей, является важной характеристикой электронной структуры комплексов. В табл. 27 приведены значения Δ для ряда октаэдрических, плоских квадратных и тетраэдрических комплексов. Величина Δ зависит от нескольких факторов. Наиболее важными из них являются геометрия комплекса, природа лигандов, заряд центрального атома и главное квантовое число n валентных d-орбиталей. Рассмотрим влияние каждого из этих факторов отдельно.

Геометрия комплекса

Путем экстраполяции значений Δ , приведенных в табл. 27, можно прийти к выводу, что при прочих равных условиях величина расщепления *d*-уровней понижается в такой последовательности:

Плоский квадрат > Октаэдр > Тетраэдр 1,3
 Δ_0 Δ_0 0,45 Δ_0

Согласно теории МО, расщепление *d*-уровней характеризует различие в силе σ- и л-связывания и определяется

Таблица 27

Значения Δ для некоторых комплексов переходных металлов

Октаэдрические комплексы	Δ, с.« ⁻¹
$Ti (H_2O)_5^{3+}$	20 300 ª
TiF_6^{3-}	17 000 ⁶
$V(H_2O)_6^{3+}$	17 850 a
$V(H_2O)_6^{2+}$	12 400 в
$Cr(H_2O)_6^{3+}$	17 400 в
$Cr(NH_3)_6^3$ +	21 600 в
$Cr(CN)_{6}^{3-}$	26 6 00 r
Cr (CO)6	34 150 r
$Fe(CN)_{6}^{3-}$	35 000 ^r
$Fe(CN)_6^{4-}$	33 800 ^r
$Co(H_2O)_6^{3+}$	18 200 в
$Co(NH_3)_6^{3+}$	22 900 в
$Co(CN)_6^{3-}$	$34\ 800\ ^{ m r}$
$Co(H_2O)_6^{2+}$	£300 в
Ni $(H_2O)_6^{2+}$	8500 в
Ni $(NH_3)_6^2$ +	10 800 в
$RhCl_6^{3-}$	20 300 в
$Rh(NH_3)_6^{3+}$	34 100 в
$RhBr_6^{3-}$	19 000 в
IrCl ³⁻	25 000 в
$\ln (NH_3)_6^{3+}$	40 000 ¤

Гетраэдрические комплексы	Δ, см ⁻¹
VCl ₄	9 000 a
$CoCl_4^{2-}$	3 300 •
$CoBr_4^{2-}$	2 900 e
$\operatorname{Col}_4^{2-}$	2 7 00 e
$Co(NCS)_4^2$	4 700 e

Плоские квадратные комплексы ^ж	Δ_1, cm^{-1}	$\Delta_2, \ cm^{-1}$	Δ3, си-1	$\Delta, c.m^{-1}$
$PdCl_4^{2-}$	19 150	6200	1450	26 800
PdBr ₄ ²⁻	18 450	5400	1350	25 200
$PtCl_4^{2-}$	23 450	5900	4350	33 700
$PtBr_4^2$ -	22 150	6000	3550	31 700
Ni (CN) $_1^{2-}$	24 950	9900	650	35 500

^а Бальхаузен К., Введение в теорлю поля лигандов, издво «Мчр», Москва, 1964, гл. 10,

⁶ Bedon H., Horner S. M, Tyree S. Y., Inorg. Chem., 3, 647 (1964). ^B Jørgensen C. K., Absorption Spectra and Chemical Bonding, Pergamon Press, London, 1962, табл. 11.5 1.

¹ Gray H. B., Beach N. A., J. Am Chem. Soc., 85, 2922 (1963).

^д Грей Г Б., Неопубликованные данные

^е Среднес из значений, приведенных в книге (в) и в статье Cotton F. A.,
 Goodgame D. M. L., Goodgame M, J. Am. Chem. Soc., 83, 4690 (1961).
 ^ж Gray H. B., Ballhausen C J., J. Am. Chem. Soc., 85, 260 (1963).

как разность энергий $\sigma^{\text{разр}}$ и π (или $\pi^{\text{разр}}$)-МО. Нанменьшая величина расщепления в тетраэдрических комплексах объясняется тем, что *d*-орбитали не участвуют в сильном σ -связывании. В октаэдрических и плоских квадратных комплексах *d*-орбитали принимают участие в образовании связывающих σ -МО. Однако в силу того, что атомные орбитали d_{xz} и d_{yz} в плоских квадратных комплексах взаимодействуют только с двумя орбиталями

Продолжение табл. 27

лигандов (в отличие от четырех в октаэдре, см. рис. 119), полная величина расщепления в этом случае ($\Delta_1 + \Delta_2 + \Delta_3$) всегда больше, чем в октаэдрическом комплексе.

Природа лиганда. Спектрохимический ряд

Расположение лигандов в спектрохимическом ряду отвечает их способности к расщеплению молекулярных $\sigma^{\text{paap}}(d)$ - и $\pi(d)$ -уровней. В комплексах с такими высокоактивными в спектрохимическом отношении лигандами,

Рис. 126. Влияние взаимодействия σ -, π - и $\pi^{\text{разр}}$ -орбиталей лиганда с d-уровнем ценгрального атома на разность энергий Δ

как СN⁻ н СО, величина Δ составляет приблизительно 30 000 см⁻¹. С другой стороны, лиганды Br⁻ и I⁻ вызывают весьма слабое расщепление *d*-уровней, часто меньше 10 000 см⁻¹. Основные типы связей центрального атома с лигандами были уже рассмотрены ранее. На рис. 126 показано влияние различных типов связи на величину Δ . Мы видим, что прочная σ -связь L \rightarrow M дестабилизирует $\sigma^{\text{разр}}(d)$, повышая значение Δ . Сильное взаимодействие L \rightarrow M по π -типу дестабилизирует $\pi(d)$, понижая значение Δ . Наоборот, сильное π -взаимодействие М \rightarrow L стабилизирует уровень $\pi(d)$, вызывая увеличение Δ . Интересно отметить, что спектрохимический ряд хорошо согласуется со способностью лигандов к образованию π -связей. Хорошие акцепторы π -электронов (т. е. лиганды, образующие прочные π -связи $M \to L$) обычно вызывают большое расщепление *d*-уровней. Активные доноры π -электронов (т. е. лиганды, способные к образованию прочных π -связей $L \to M$) вызывают очень малое расщепление. Лиганды, находящиеся в середине спектрохимического ряда, обладают низкой способностью к π -связыванию или вовсе не образуют π -связей.

Ниже приводится спектрохимический ряд для наиболее важных лигандов:

-CO,
$$-CN^{-} > -NO_{2}^{-} > o$$
-Phen* >
| $NH_{3} > OH_{2} > OH^{-}$, $F^{-} > SCN^{-}$, $CI^{-} > Br^{-} > I^{-}$
| $He \ of pasy ior \ \pi$ -Chable
| π -Chable | π -Chable |

* o-Phen = o-Фенантролин

Заряд центрального атома

В комплексах со слабыми акцепторами π -электронов значения Δ обычно повышаются с ростом положительного заряда центрального атома. В качестве примера можно сравнить комплексы $V(H_2O)_6^{2+}(\Delta = 11\ 800\ cm^{-1})$ и $V(H_2O)_6^{3+}$ ($\Delta = 17\ 850\ cm^{-1}$). Возрастание Δ в этом случае обусловлено упрочнением освязи с ростом положительного заряда на центральном ионе металла. Это должно привести к увеличению разности энергий оразр(d)-и $\pi(d)$ -уровней.

В соединениях с активными акцепторами π -электронов рост положительного заряда центрального атома, повидимому, не должен сопровождаться замстным возрастанием Δ . Например, величина Δ для комплексов Fe (CN)₆⁴⁻ и Fe (CN)₆³⁻ практически одинакова и составляет 34 000 сm⁻¹. При переходе от Fe (CN)₆⁴⁻ к Fe (CN)₆⁵⁻ энергия $\pi(d)$ - и $\sigma^{\text{разр}}(d)$ -уровней повышается примерно одинаково. Вероятно, это происходит в результате ослабления π -связи $M \rightarrow L$ при увеличении положительного заряда на центральном атоме. Главное квантовое число валентных д-орбиталей

С изменением *п* значения Δ для однотипных комплексов возрастают в последовательности 3d < 4d < 5d. Например, для комплексов Co $(NH_3)_6^{3+}$, Rh $(NH_3)_6^{3+}$, lr $(NH_3)_6^{3+}$, величина Δ составляет соответственно 22 900, 34 100 и 40 000 сm⁻¹. По-видимому, валентные 5d- и 4d-орбитали участвуют в образовании σ-связей в большей степсии, чем 3d-орбитали.

9-13. Магнитные свойства комплексов. Лиганды слабого и сильного поля

Рассмотрим более подробно электронные конфигурации октаэдрических комплексов металлов, имеющих более одного валентного электрона. Возвращаясь к разделу 9-5, находим, что иопы металлов, имеющие один, два или три валентных электрона, обладают следующими электронными конфигурациями: $\pi(d)$, $S = \frac{1}{2}$; $[\pi(d)]^2$, S = 1; $[\pi(d)]^3$, $S = \frac{3}{2}$. Для металлов с четырьмя d-электронами существуют две возможные конфигурации в зависимости от величины Δ в комплексе. В случае, если Δ меньше энергии спаривания двух d-электронов на $\pi(d)$ -уровне, все четыре электропа не спарены, что отвечает конфигурации [$\pi(d)$]³[$\sigma^{\text{разр}}(d)$]¹. Лиганды, вызывающие такое небольшое расщепление, называются лигандами слабого поля.

В случае, если величина Δ превышает энергию, необходимую для спаривания электронов, четвертый электрон предпочитает перейти на более устойчивый $\pi(d)$ уровень и спариться с одним из трех имеющихся там электронов. При этом конфигурация основного состояния имеет вид $[\pi(d)]^4$ с двумя неспарешными электронами (S=1). Лиганды, вызывающие такое расщепление, при котором электрону выгоднее занять более устойчивый $\pi(d)$ -уровень, называются лигандами сильного поля.

При заполнении $\pi(d)$ - и $\sigma^{\text{pasp}}(d)$ -уровней конфигурации d^4 , d^5 , d^6 и d^7 могут иметь одно из двух возможных значений S в зависимости от величины Δ в комплексе.

214

В этих случаях комплексы с бо́лышими значениями S называются высокоспиновыми, а с меньшими значениями S — низкоспиновыми. У высокоспиновых комплексов парамагнетизм больше, чем у низкоспиновых. В табл. 28 приводятся примеры октаэдрических комплексов с различными конфигурациями $[\pi(d)]^{\alpha}[\sigma^{\text{papp}}(d)]^{y}$.

Таблица 28

Электронная конфигурация ценгрального атома	Электронное строение комплекси	Пример	
$3d^1$	$\left[\pi\left(d\right)\right]^{1}$	$Ti (H_2O)_6^{3+}$	
$3d^2$	$\left[\pi\left(d\right)\right]^{2}$	$V(H_2O)_6^{3+}$	
$3d^3$	$\left[\pi\left(d\right)\right]^{3}$	$Cr(H_2O)^{3+}_{6}$	
3d ⁴ низкоспиновая	$\left[\pi\left(d\right)\right]^{4}$	Mn (CN) ₆ ³⁻	
высокоспиновая	$[\pi (d)]^{3} [\sigma^{pasp} (d)]$	$Cr(H_2O)_6^{2+}$	
За ⁵ низкоспиновая	$[\pi (d)]^5$	Fe $(CN)_{6}^{3-}$	
высокосинновая	$[\pi(d)]^3 [\sigma^{\text{pasp}}(d)]^2$	$Mn(H_2O)_6^{2+}$	
3d ⁶ низкоспиновая	$[\pi(d)]^6$	$Co(NH_3)_6^{3+}$	
высокоспиновая	$[\pi(d)]^4 [\sigma^{pa_{3p}}(d)]^2$	CoF_6^{3-}	
3d ⁷ низкоспиновая	$\left[\pi\left(d\right)\right]^{6}\left[\sigma^{\mathrm{pasp}}\left(d\right)\right]$	$\operatorname{Co}(\operatorname{NO}_2)_6^{4-}$	
высокоспиновая	$[\pi (d)]^5 [\sigma^{pa_{3p}} (d)]^2$	$Co(H_2O)_6^{2+}$	
$3d^8$	$[\pi (d)]^6 [\sigma^{pa_{3p}} (d)]^2$	Ni $(NH_3)_6^{2+}$	
$3d^9$	$[\pi (d)]^6 [\sigma^{pa3p} (d)]^3$	$\operatorname{Cu}(\operatorname{H}_2\operatorname{O})^{2+}_6$	

Электронные конфигурации октаэдрических комплексов

В первом переходном ряду наиболее прочные октаэдрические комплексы образуют ионы $Cr^{3+}(d^3)$, $Ni^{2+}(d^3)$ и Co^{3+} (d^6 , низкоспиновый). Существование многочисленных комплексов Cr^{3+} и Co^{3+} хорошо согласуется с тем фактом, что при конфигурациях [$\pi(d)$]³ и [$\pi(d)$]⁶ имеются наиболее благоприятные условия для образования

215

Рис. 127. Расщепление s-, p-, d- и f-уровней в октаэдрическом кристаллическом поле.

Продолжение рис. 127
устойчивых $\pi(d)$ -МО. Конфигурация $[\pi(d)]^6[\sigma^{\text{разр}}(d)]^2$ устойчива только при сравнительно низких значениях Δ .

Расщепление *d*-уровней в тетраэдрических комплексах обычно невелико. Вследствие этого ионы металлов первого переходного ряда не образуют низкоспиновых тетраэдрических комплексов Известно большое количество тетраэдрических комплексов двухвалентного кобальта ($3d^7$), например CoCl²₄-, Co(NCS)²₄- и Co(OH)²₄-Устойчивость таких комплексов можно объяснить тем, что при конфигурации [$\pi^{paap}(d)$]⁴[$\sigma^{paap}(d)$]³ возможно наиболее выгодное использование устойчивого $\pi^{paap}(d)$ уровня.

9-14. Электронные спектры октаэдрических комплексов

Спектр иона Ті $(H_2O)_6^{3+}$ является весьма простым, поскольку единственно возможным d - d-переходом в этом комплексе является переход $\pi(d) \rightarrow \sigma^{\text{pasp}}(d)$. Теперь мы должны выяснить, появления скольких полос можно ожидать в электронных спектрах комплексов, в которых ион металла имеет более одного d-электрона. В данном случае удобно воспользоваться моделью теорин кристаллического поля. Будем определять расщепление термов свободного иона в октаэдрическом поле.

В качестве примера рассмотрим спектр иона V $(H_2O)_6^{2+}$

Валентной конфигурацией иона V²⁺ является 3d³. Определим термы свободного иона с конфигурацией d³ (см. главу I). Эгими термами являются ⁴F, ⁴P, ²G, ²D и ²S. В соответствии с правилами Гунда основным состоянием должно быть ⁴F. Поскольку переходы между состояниями с различными значениями S запрещены (так называемый запрет по спину). нам нужно рассматривать только расщепление термов ⁴F и ⁴P в октаэдрическом поле. При этом учтем, что термы свободного иона и одноэлектронные орбитали с тем же значением момента количества движения расщепляются в кристаллическом поле на одинаковое число уровней. Иначе говоря, терм D расщепляется на два уровня (назовем их T_2 и E) точно так же, как d-орбитали расщепляются на уровни t_2 На рис. 127 изображены s-, p-, d- и f-орбитали в октаэдрическом поле. Характер расщепления, который можно определить по рис. 127, приведен в табл. 29 Из этих данных видно, что терм ${}^{4}F$ расщепляется на три уровня — ${}^{4}A_2$, ${}^{4}T_2$ п ${}^{4}T_1$; терм ${}^{4}P$ не расщепляется, он просто

переходит в уровень ${}^{4}T_{1}$ Диаграмма энергетиче ских уровней, необходимая ДЛЯ рассмотрения спектра $V(H_2O)_6^{2+}$, приведена на рис. 127. В соответствии со вторым пра-Гунда терм 4P вилом располагается выше терма 4 Г. Известно, что для иона V^{2+} терм ^{4}P выше, чем ⁴*F*, на 11500 см⁻¹ Относительные энергии трех уровней, возникающих из терма ${}^{4}F$, можно вычислить. Результаты этого вычисления представлены на рис. 128 в единицах параметра октаэдрического расщепления Δ .

Основным состоянием нона V(H₂O)₆²⁴ является ⁴A₂. Из схемы энергетических уровней видно, что

возможны три перехода: ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$, ${}^{4}A_{2} \rightarrow {}^{4}T_{1}(F)$ и ${}^{4}A_{2} \rightarrow {}^{4}T_{1}(F)$. Спектр V ($H_{2}O)_{6}^{2}$ ' изображен на рис. 129. В соответствии с предсказанием теорни в нем действительно наблюдаются три полосы поглощения. Энергии переходов, указанных на диаграмме энергетических уровней, приведены в табл. 30.

Первую полосу поглощения при 12 300 см⁻¹ можно отнести к переходу ${}^{1}A_{2} \rightarrow {}^{4}T_{2}$. При этом получаем значение $\Delta = 12 300 \text{ см}^{-1}$. Используя полученную величину Δ и значение $E ({}^{4}F - {}^{4}P) = 11 500 \text{ см}^{-1}$ для V (H₂O)₆²⁺, можно вычислить эпергии остальных двух переходов и сравнить их с экспериментальными данными, как это сделано в табл. 31.

Рис. 129. Электронный спектр поглощения V $(H_2O)_6^{2+}$.

На рис. 130 приведены диаграммы энергетических уровней для нескольких важных *d*-электронных конфигураций.

Таблица 29

Тип орбитази	Число уровней	Отнесение уровней по симметрии	Степень вырождения уровней
S	1	a_1	1
р	1	t_1	3
d	2	t_2	3
		e	2
f	3	a_2	1
		t_2	3
		t_1	3

Расщепление уровней

Рис. 130. Энергетические уровни нонов металла с различными конфигурациями d^n в октаэдрическом поле,

16 Г. Грей

Таблица 30

Выражения энергии для трех возможных переходов в V (HO₂O)₆²⁺

Περεχοι	Энергия
${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ ${}^{4}A_{2} \rightarrow {}^{4}T_{1}(F)$	$\frac{\Delta}{\frac{9}{7}} \Delta$
$^{4}A_{2} \rightarrow ^{4}T_{1}(P)$	$\frac{6}{5}\Delta + E({}^{4}F - {}^{4}P)$

Таблица 31

Сопоставление вычисленных значений энергии переходов с экспериментальными значениями для $V(H_2O)_6^{2+}$

вычисленное	экспериментальное а
(12 300)	12 300
22 140	18 500
26 260	27 900
	вычисленное (12 300) 22 140 26 260

^a JØrgensen C. K., Absorption Spectra and Chemical Bonding. Pergamon Press, London, 1962, p. 290.

Упражнение

. 9-1. Докажите эквивалентность d_{z^2} - и $d_{x^2-y^2}$ -орбигалей в октаэдрическом комплексе

Решение. С целью доказательства вычислим интегралы перекрывания $d_{x^2-y^{2^*}}$ и d_{z^2} -орбиталей с соответствующими нормированными комбинациями орбиталей лигандов. Интегралы перекрывания $S(d_{x^2-y^2})$ и $S(d_{z^2})$ выразим через стандартный двухцентровый интеграл перекрывания между $d_{z^{2^*}}$ и о-орбиталью лиганда (рис. 131). Обозначим эту величину $S(\sigma, d_{\sigma})$. Из табл 27 находим угловые функции для $d_{x^2-y^*}$ и d_{z^2}

$$d_{z^2} = c \left(3z^2 - r^2 \right) \tag{185}$$

Н

$$d_{x^2 - y^2} = \sqrt{3} c (x^2 - y^2), \qquad (186)$$

где $c = \sqrt{5}/(4\sqrt{\pi}r^2)$. Нормпрованные комбинации орбиталей лигандов имеют вид

$$d_{z^2} = \frac{1}{2\sqrt{3}} \left(2z_5 + 2z_6 - z_1 - z_2 - z_3 - z_4 \right) \quad (187)$$

И

$$d_{x^2-y^2} = \frac{1}{2} (z_1 - z_2 + z_3 - z_4).$$
(188)

Прежде всего вычислим $S(d_{x^2-y^2})$:

$$S(d_{x^2-y^2}) = \int \sqrt{3} c (x^2 - y^2) \frac{1}{2} (z_1 - z_2 + z_3 - z_4) d\tau. \quad (189)$$

Преобразование этого интеграла в стандартный двухцентровый интеграл перекрывания $S(\sigma, d_{\sigma})$ достигается путем поворота системы

Рис. 131. Непосредственное перекрывание *d*-орбитали центрального атома с валентной осорбиталью лиганда

координат центрального атома для согласования ее с системой координат каждого из лигандов І, ІІ, ІІІ и ІV. Пользуясь обозначениями рис. 132, производим следующие преобразования координат:

$$\frac{M c \ I}{z \to y} \qquad \frac{M c \ II}{z \to x} \qquad \frac{M c \ III}{z \to -x} \qquad \frac{M c \ III}{z \to -y} \qquad \frac{M c \ IV}{z \to -y}$$

$$x \to -z \qquad x \to y \qquad x \to z \qquad x \to -x$$

$$y \to -z \qquad y \to -y \qquad y \to z$$

Таким образом

$$\frac{\sqrt{3}}{2} c (x^2 - y^2) z_1 \to \frac{\sqrt{3}}{2} c (z^2 - x^2) \sigma, \qquad (190)$$

$$-\frac{\sqrt{3}}{2}c(x^2-y^2)z_2 \to -\frac{\sqrt{3}}{2}c(y^2-z^2)\sigma, \quad (191)$$

$$\frac{\sqrt{3}}{2} c (x^2 - y^2) z_3 \to \frac{\sqrt{3}}{2} c (z^2 - y^2) \sigma, \qquad (192)$$

$$-\frac{\sqrt{3}}{2}c(x^2-y^2)z_1 \to -\frac{\sqrt{3}}{2}c(x^2-z^2)\sigma.$$
(193)

Рис. 132. Система координат для октаэдрического комплекса.

Складывая все четыре преобразованных выражения, получаем $S(d_{x^2-y^2}) = \int \sqrt{3} c (2z^2 - x^2 - y^2) \sigma d\tau =$ $= \int \sqrt{3} c (3z^2 - r^2) \sigma d\tau = \sqrt{3} S (\sigma, a_{\sigma}). \quad (194)$

Далее вычисляем $S(d_{z^2})$:

$$S(d_{z^2}) = \int c (3z^2 - r^2) \frac{1}{2\sqrt{3}} (2z_5 + 2z_6 - z_1 - z_2 - z_3 - z_4) d\tau.$$
(195)

Интегралы с участнем z₅ и z₆ представляют собой простые двухцентровые интегралы перекрывания (рис. 131):

$$\int c (3z^2 - r^2) \frac{1}{2\sqrt{3}} (2z_5 + 2z_6) d\tau = \frac{2}{\sqrt{3}} S(\sigma, d_{\sigma}). \quad (196)$$

Интегралы, включающие z_1 , z_2 , z_3 и z_4 , преобразуются в $S(\sigma, d_{\sigma})$ таким же путем, как и при вычислении $S(d_{x^2-y^2})$:

$$-c (3z^2 - r^2) z_1 \to -c (3y^2 - r^2) \sigma, \qquad (197)$$

$$-c(3z^{2}-r^{2})z_{2} \rightarrow -c(3x^{2}-r^{2})\sigma, \qquad (198)$$

$$-c (3z^{2} - r^{2}) z_{3} \rightarrow -c (3x^{2} - r^{2}) \sigma, \qquad (199)$$

$$-c(3z^2-r^2)z_4 \rightarrow -c(3y^2-r^2)\sigma.$$
(200)

Объединяя четыре преобразованных выражения, получаем

$$\int c (3z^{2} - r^{2}) \frac{1}{2\sqrt{3}} (-z_{1} - z_{2} - z_{3} - z_{4}) d\tau =$$

$$= \frac{1}{2\sqrt{3}} \int c (6x^{2} + 6y^{2} - 4r^{2}) \sigma d\tau =$$

$$= \frac{1}{\sqrt{3}} \int c (3z^{2} - r^{2}) \sigma d\tau = \frac{1}{\sqrt{3}} S(\sigma, d_{\sigma}). \quad (201)$$

Наконец, складывая результаты, полученные в (196) и (201), находим $S(d_{z^2}) = \frac{2}{\sqrt{3}} S(\sigma, d_{\sigma}) + \frac{1}{\sqrt{3}} S(\sigma, d_{\sigma}) = \sqrt{3} S(\sigma, d_{\sigma}).$ (202)

Следовательно,

$$S(d_{z^2}) = S(d_{x^2 - y^2}) = \sqrt{3} S(\sigma, d_{\sigma}).$$
 (203)

Таким образом, интегралы перекрывания орбиталей $d_{x^2-y^2}$ и d_{z^2} с соответствующими пормированными комбинациями орбиталей лигандов одинаковы, и эти валентные орбитали в октаздрическом комплексе эквивалентны друг другу.

Дополнительные упражнения

 При каких условиях описание σ-связей в октаэдрическом комплексе методами МО и ВС эквивалентно? Выведите волновые функции для валентных связей, изображенных на рис. 115, из функций МО.

2. Постройте волновые функции методами МО и ВС для σ-связей в плоском квадратном комплексе. В каком случае полученные выражения совпадут? 3. Какой комплекс имеет более высокое значение Δ : Co(CN)₆³⁻ или Co(NH₃)₆³⁺? Co(NH₃)₆³⁺ или CoF₆³⁻? Co(H₂O)₆³⁺ или Rh(H₂O)₆³⁺? PdCl₄²⁻ или PtCl₄²⁻? Ptl₄²⁻ или PtCl₄²⁻? VCl₄ или CoCl₄²⁻? VCl₄ или CoF₆³⁻? PdCl₄²⁻ или RhCl₆³⁻? Co(H₂O)₆²⁺ или Co(H₂O)₆³⁺?

4. Найдите количество неспаренных электронов в каждом из следующих комплексов:

a) VF₆³⁻; б) FeCl₄⁻; в) NiCl₄²⁻ (тетраэдр); г) PdCl₄²⁻;

д) $Cu(NH_3)_4^{2+}$; e) $Fe(CN)_6^{4-}$; ж) $Fe(CN)_6^{3-}$; з) TiF_6^{3-} ;

и) Ni (CN)₄²⁻; к) RhCl₆³⁻; л) IrCl₆²⁻.

5. Объясните, почему ион Zn²⁺ в водном растворе бесцветен. Почему ион Mn²⁺ имеет бледно-розовую окраску?

6. В спектре Ni $(NH_3)_c^{2+}$ наблюдаются полосы поглощення при 10750, 17500 и 28 200 см⁻¹. Вычислите этот спектр, пользуясь соответствующей диаграммой (рис. 130) и значением $\Delta E ({}^3F - {}^3P)$ для иона Ni²⁺, равным 15 800 см⁻¹. Дайте обоснованное отнесение всех трех полос поглощения в спектре.

7. Составьте схему энергетических уровней четырех состояний, образованных из ${}^{3}F$ и ${}^{3}P$ в октаэдрическом поле для иона с конфигурацией d^{2} (см. рис. 130), если величина Δ составляет 20 000 см⁻¹. Предложите разумное значение $\Delta E ({}^{3}F - {}^{3}P)$. Дайте общую характеристику спектра поглощения для иона с конфигурацией d^{2} в октаэдрическом поле, если значения Δ составляют 8000, 12 000 и 18 000 см⁻¹.

Заключение

Теория химической связи в элементарном изложении может показаться совершенно ясной и окончательно разработанной. Подобная точка зрения весьма опасна и ее следует избегать. На самом деле наши познания в области химической связи все еще находятся на ранней стадии развития. Правильнее было бы сказать, что приближенные теории, которыми мы пользуемся в настоящее время, помогают нам ориентироваться в большом количестве экспериментальных данных и, следовательно, предоставляют в наше распоряжение работоспособный язык для обсуждения «правил» образования химической связи. Однако теорию, способную дать точное описание сил, которые удерживают атомы в молекуле, и количественно предсказать все свойства многоатомных молекул, предстоит еще разработать.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1 Бальхаузен К, Введение в теорию поля лигандов, изд-во «Мир», Москва, 1964.
- 2 Ballhausen C J, Gray H B, Molecular-Orbital Theory, Benjamin, New York, 1964
- 3. Cartmell E, Fowles G W. A, Valency and Molecular Stru-
- cture, 2nd ed., Butterworths Scientific Publications, London, 1961. 4. Cotton F. A., Chemical Applications of Group Theory, John Wiley and Sons, Inc Interscience Publishers, New York, 1963.
- 5. Коулсон Ч, Валентность, изд-во «Мир», Москва, 1965.
- 6. Эйринг Г., Уолтер Дж, Кимбалл Дж., Квантовая химия, Издатинлит, Москва, 1948.
- 7. Герцберг Г., Атомные спектры и строение атомов, Издатинлит, 1948.
- 8. Linnett J. W., Wave Mechanics and Valency, John Wiley and Sons, Inc., New York, 1960
- 9. Оргел Л, Введение в химию переходных металлов, Издатинлнт, Москва, 1964
- 10 Parr R. G., The Quantum Theory of Molecular Electronic Structure, Benjamin, New York, 1963
- 11 Pauling L, The Nature of the Chemical Bond, Cornell Univer-sity Press, Ithaca, N. Y, 1960.
- 12 Rice F. O., Teller E., The Structure of Matter, John Wiley and Sons, Inc., New York, 1949.

ФИЗИЧЕСКИЕ КОНСТАНТЫ*

Постоянная Планка h 6,6256 · 10⁻²⁷ эрг · сек Скорость света с Масса покоя электрона m_e 9,1091 · 10⁻²⁸ eЗаряд электрона е Боровский радиус а Число Авогадро N

2,997925 • 1010 см/сек 4.80298 · 10⁻¹⁰ эл. ст. ел. (см³/2/сек) 0,529167 Å 6,0247 • 10²³ 6.0247 · 10²³ моль⁻¹ (физическая шкала)

Коэффициенты пересчета

Энергия

1 атомная единица (*ae*) = 27,21 $\mathfrak{se} = 4,3592 \cdot 10^{-11} \mathfrak{spz} =$ $= 2.1947 \cdot 10^5 \ cm^{-1} = 627.71 \ \kappa \kappa a n/month{month}$

Ллина

1 ангстрем (Å) = $10^{-8} c.m$

^{*} Значения, рекомендованные Национальным бюро стандартов США; см. J. Chem. Educ., 40, 642 (1963).

ЭНЕРГИИ ИОНИЗАЦИИ АТОМНЫХ ОРБИТАЛЕЙ

В данной книге предложен ряд схем энергетических уровней молекулярных орбиталей. Для лучшего понимания этих диаграмм и построения аналогичных схем МО в других случаях желательно знать относительные энергии валентных орбиталей. Энергии ионизации атомных орбиталей, приведенные в табл. 32, вычислены в Колумбийском колледже д-ром Арленом Вистом и Гарольдом Бэшем. Эти данные представляют собой одноэлектронные энергии ионизации валентных орбиталей данного атома, определенные из средних значений энергии основного и ионизированного состояния конфигурации (т. е. средней энергии всех термов, относящихся к данной конфигурации).

Таблица 32

Атом	15	25	2 <i>p</i>	35	3р	45	4 <i>p</i>
Н	110						
He	198						
Li		44					
Be		75					1
В		113	67				
С		157	86				
Ν		206	106				
Ο	5	261	128		1		
F		374	151				

Энергии ионизации с атомных орбиталей Конфигурация атомов *s* или *s²pⁿ*; энергия выражена в 10³ *см*⁻¹

Продолжение табл. 32

<u> </u>						Эолжение	табл. 32
Атом	15	25	2 <i>p</i>	35	Зр	15	4 <i>p</i>
Ne		391	174				
Na				42			
Mg				62		1 1	
Al				91	48		
Si				121	63		
Р				151	82		
S				167	91		
Cl				204	111		
Ar				236	128		
К						35	
Ca						49	
Zn						76	
Ga						102	48
Ge						126	61
As						142	73
Se						168	87
Br						194	101
Kr						222	115
Атом	$ 3d^{n-1}$	$\frac{4s \rightarrow 3d^{n}}{3d}$	1 - 2 _{4s}	.3 <i>d^{n 1}4s</i>	$\rightarrow 3d^{n-1}$	$3d^{n-1}4p$	$\rightarrow 3d^{n-1}$
Sc		38		4	46		26
Ti	45		49		27		
V	51		51		2	28	
Cr	58 64		53		28		
Fe	04 70		57		30		
Co		76		5	59	31	
Ni		81		6	51	31	
Cu		86		6	52	3	2
	1			•		i	

содержание

Предисловие	5
Предисловие автора	7
Глава I. Электроны в атомах	9
1-1 Предварительные замечания	9
1-2. Строение атома водорода по Бору (1913 г)	9
1-3. Спектр атома водорода	12
1-4. Необходимость усовершенствования теории Бора	17
1-5 Электронные волны	17
1-6 Принцип неопределенности	19
1-7 Волновая функция	20
1-8. Волновое уравнение Шредингера	21
1-9. Постоянная нормировки	22
1-10 Радиальная часть волновой функции	22
1-11. Угловая часть волновой функции	22
1-12. Орбитали	23
I-13. Спин электрона	28
1-14. Теория многоэлектронных атомов	28
1-15 Термы Расселла — Саундерса	31
1-16 Потенциалы ионизации	37
1-17. Сродство к электрону	45
Дополнительные упражнения	47
Глава II. Двухатомные молекулы	48
2-1. Ковалентная связь	48
2-2. Теория молекулярных орбиталей	51
2-3. Связывающие и разрыхляющие молекулярные	
орбитали	52
2-4. Энергетические уровни молекулярных орбиталей	54
2-5 Молекула водорода	59
2-6 Длины связей в H ₂ и H ₂	60
2-7. Энергии связей в H_2^+ и H_2^-	61

2-9. Гомонуклеарные двухаточные молекулы элементов второго периода периодической системы 62 2-10 Другие молекулы A2. 73 2-11 Символы термов липейных молекул 75 2-12 Гетеронуклеарные двухаточные молекулы 79 2-13. Схема энергетических уровней МО гидрила лития LiH 82 2-14. Основное состояние LiH 83 2-15. Дипольные моменты 84 2-16. Электроотрицательность 85 2-17 Ионная связь 88 2-18 Простая понная модель галогенидов щелочных металлов 91 2-19 Общий случай молекулы AB 94 Дополнительные упражнения 100 7.1. Абликтельные упражнения 102 3-1. Молекула BeH2 102 3-3. Теория валентных связей в молекулы с л-связями 110 3-5. Характеристик	2-8 Магнитные сройства Н ² и Н ₂		61
второго перпода перподнической системы 62 2-10 Другие молекулы А2 73 2-11. Сливолы термов липейных молекул 75 2-12 Гетеронуклеарные двухатомные молекулы 79 2-13. Схема энергетических уровней МО гидрида лития LiH лития LiH 82 2-14. Основное состояние LiH 83 2-15. Дипольные моменты 84 2-16. Электроотрицательность 85 2-17. Ионная связь 88 2-18 Простая ионная модель галогенидов щелочных металлов 91 2-19 Общий случай молекулы AB 94 Дополнительные упражнения 100 7.106a III. Линейные трехатомные молекулы BEH2 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 109 3-4. Линейные трехатомные молекулы С л-связями 110 3-5. Характеристика связей в применении к BeH2 109 3-4. Линейные трехатомные молекулы С л-связями 110 3-5. Характеристика связей в молекулы С 2 115 3-6 Попина трехатомные молекулы С 2 115 3-6 Попина трехатомные молекулы ВеН3 120	2-9. Гомонуклеарные двухатомные молекулы элеми	ентов	
2-10 Другие молекулы A2. 73 2-11. Символы термов линейных молекул 75 2-12 Гетеронуклеарные двухаточные молекулы 79 2-13. Схема энергетических уровней МО гидрида 79 2-14. Основное состояние LiH 83 2-15. Дипольные моменты 84 2-16. Электроотрицательность 85 2-17. Ионная связь 88 2-18. Простая ионная модель галогенидов щелочных металлов 91 2-19. Общий случай молекулы AB 94 Дополнительные упражнения 100 <i>Г.иава</i> 111. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 104 3-3. Теория валентных связей в применения к BeH2 109 3-4. Линейные трехатомные молекулы Со2 115 3-6. Поплыку таркустрольные молекулы Со2 115 3-6. Поплык связей в молекуле Со2 115 3-6. Поплыку паркые сорбитали 110 3-5. Характеристика связей в молекулы Слосендаями 110 4-1. Молекула ВF3 120	второго периода периодической системы		62
2-11. Символы термов линейных молекул 75 2-12. Гетеронуклеарные двухатомные молекулы 79 2-13. Скема энергетических уровней МО гидрида лития LiH 82 2-14. Основное состояние LiH 82 2-15. Дипольные моменты 84 2-16. Электроотрицательность 85 2-17. Ионная связь 88 2-18. Простая ионная модель галогенидов щелочных металлов 91 2-19. Общий случай молекулы AB 94 Дополнительные упражнения 100 7.4.064 11. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 104 3-3. Теория валентных связей в применении к BeH2 109 3-4. Линейные трехатомные молекулы Сласвязями 110 3-5. Характеристика связей в молекулы Со2 115 3-6. Попные трехатомные молекулы Галогениды щелоч- поземельных металлов 116 Дополнительные упражнения 119 7.лава IV Плоские треугольные молекулы Галогениды щелоч- поземельных металлов 116 Дополительные упражнения 120 4-1. Молекула BF3 120 4-1. Молекула BF3 120 4-2. Молеку	2-10 Другне молекулы А2.		73
2-12 Гетеронуклеарные двухатомные молекулы 79 2-13. Схема энергетических уровней МО гидрида лития LiH 82 2-14. Основное состояние LiH 83 2-15. Дипольные чоменты 84 2-16. Электроотрицательность 85 2-17. Ионная связь 88 2-18. Простая ионная модель галогенидов щелочных металлов 91 2-19. Общий случай молекулы AB 94 Дополнительные упражнения 100 7.1. Молекула BeH2 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы 102 3-1. Молекула BeH2 104 3-3. Теория валентных связей в применения к BeH2 109 3-4. Линейные трехатомные молекулы С л-связями 110 3-5. Характеристика связей в применения к BeH2 109 3-4. Линейные трехатомные молекулы С 2 115 3-6 Ношиме трехатомные молекулы 120 4-1. Молекула BF3 120 4-1. Молекуларные с-орбитали 120 4-2. <td>2-11. Символы термов линейных молекул</td> <td></td> <td>75</td>	2-11. Символы термов линейных молекул		7 5
2-13. Схема энергетических уровней МО гидрида лития LiH 82 2-14. Основное состояние LiH 83 2-14. Основное состояние LiH 83 2-15. Дипольные моменты 84 2-16. Электроотрицательность 85 2-17. Ионная связь 88 2-18. Простая ионная модель галогенидов щелочных металлов 91 2-19. Общий случай молекулы AB 94 Дополнительные упражнения 100 7.1060 III. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 104 3-3. Теория валентных связей в применении к BeH2 109 3-4. Линейные трехатомные молекулы CO2 115 3-6. Пониме трехатомные молекулы Галогениды щелоч- ноземельных металлов 116 Дополнительные упражнения 120 4-1. Молекула BF3 120 4-1. Молекуларные с-орбитали 121 4-3. Молекуларные сорбитали 121 4-4. Энергетические уровни молекулы 120 4-1. Молекуларные с-орбитали 121 4-3. Молекуларные с-орбитали 121 4-4. Энергетические уровни молекулы 132 4-5. Экв	2-12 Гетеронуклеарные двухатомные молекулы .		79
лития LiH 82 2-14. Основное состояние LiH 83 2-15. Дипольные моменты 84 2-16. Электроотрицательность 85 2-17 Ионная связь 85 2-17 Ионная связь 87 2-18 Простая понная модель галогенидов щелочных металлов 91 2-19 Общий случай молекулы AB 94 дополнительные упражнения 100 7.1030 III. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 104 3-3. Теория валентных связей в применения к BeH2 109 3-4. Линейные трехатомные молекулы C п-связями 110 3-5. Характеристика связей в молекулы C Со2 115 3-6 Понные трехатомные молекулы C Со2 115 3-6 Понные трехатомные молекулы C Пооские треугольные молекулы C Со2 116 Дополнительные упражнения 119 7.4080 IV Полекула BF3 120 4-1 Молекула BF3 120 4-1 Молекула BF3 120 4-1 Молекуларные п-орбитали 121 4-3 Молекуларные п-орбитали 124 4-4 Энергетические уровни молекулы BF3 125 </td <td>2-13. Схема энергетических уровней МО гил</td> <td>црида</td> <td></td>	2-13. Схема энергетических уровней МО гил	црида	
2-14. Основное состояние LiH 83 2-15. Дипольные моменты 84 2-16. Электроотрицательность 85 2-17 Ионная связь 85 2-18 Простая ионная модель галогенидов щелочных металлов 91 2-19 Общий случай молекулы AB 94 Дополнительные упражнения 100 7.иава III. Линейные трехатомные молекулы BH2 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 102 3-4. Линейные трехатомные молекулы BeH2 104 3-5. Характеристика связей в применении к BeH2 104 3-6. Пониме трехатомные молекулы CO2 115 3-6 Пониме трехатомные молекулы Галогениды щелочноземельных металлов 116 Дополнительные упражнения 120 4-1 Молекула BF3 120 4-1 Молекула BF3 120 4-1 Молекула BF3 120 4-2 Молекулярные оорбитали 121 4-3. Мо текулярные сообитали 121 4-3. Мо текулярные сообитали 121 4-4. Энергетические уровни молекулы BF3 125 4-5 Эквивалентность σ _x и σ _y -орбиталей 127 4-6 Основное состояние молекулы BF3 <	лития LiH		8 2
2-15. Дипольные моменты 84 2-16. Электроотрицательность 85 2-17 Ионная связь 88 2-18 Простая ионная модель галогенидов щелочных металлов 91 2-19 Общий случай молекулы AB 94 Дополнительные упражнения 100 Глава III. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 102 3-3. Теория валентных связей в применения к BeH2 109 3-4. Линейные трехатомные молекулы C π-связями 110 3-5. Характеристика связей в молекулы C 7-связями 110 3-6. Понные трехатомные молекулы C 7-связями 110 3-7. Понейные трехатомные молекулы C 7-связями 110 3-6. Понные трехатомные молекулы C 7-связями 110 3-7. Карактеристика связей в молекулы C 7-связями 110 3-6. Понные трехатомные молекулы C 7-связями 110 4-1. Молекула BF3 120 4-2. Молекула BF3 122 4-3. Мотекула BF3	2-14. Основное состояние LiH		83
2-16. Электроотрицательность 85 2-17 Ионная связь 88 2-18 Простая ионная модель галогенидов щелочных металлов 91 2-19 Общий случай молекулы AB 94 Дополнительные упражнения 100 <i>Глава</i> III. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 104 3-3. Теория валентных связей в применении к BeH2 109 3-4. Линейные трехатомные молекулы с π-связями 110 3-5. Характеристика связей в молекулы СО2 115 3-6 Понные трехатомные молекулы Галогениды щелоч- 103 иоземельных металлов 116 Дополнительные упражнения 120 4-1 Молекула BF3 120 4-1 Молекула BF3 120 4-1 Молекула BF3 120 4-2 Молекуларные σ-орбитали 121 4-3. Мо текулярные σ-орбитали 121 4-3. Мо текуларные π-орбитали 121 4-4. Энергетические уровни молекулы BF3 128 4-5 Эквивалентность σ _x -и σ _y -орбиталей 127 4-6 Основное состояние молекулы BF3 128 4.7. Молекула BF3 в методе валентных связе	2-15. Дипольные моменты	• •	. 84
2-17 Ионная связь 88 2-18 Простая ионная модель галогенидов щелочных металлов 91 2-19 Общий случай молекулы AB 94 Дополнительные упражнения 100 Глава III. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 102 3-3. Теория валентных связей в применения к BeH2 104 3-3. Теория валентных связей в молекулы CA 110 3-5. Характеристика связей в молекулы CA 110 3-6. Понные трехатомные молекулы Галогениды щелочноземельных металлов 116 Дополнительные упражнения 119 7лава IV Плоские треугольные молекулы Галогениды щелочноземельных металлов 116 Дополнительные упражнения 120 4-1 Молекула BF3 120 4-2 Молекуларные соорбитали 121 4-3. Молекула BF3 122 4-4. Энергетические уровни молекулы BF3 125 4-5 Эквивалентность бл. и бу-орбитали 127 4-6 Основное состояние молекулы BF3 128 4-7. Молекула BF3 в методе валентных связей 130 4-8. Другие плоские треугольные молекулы BF3 128 4-7. Молекула BF3 в ме	2-16. Электроотрицательность	• •	. 85
2-18 Простая нонная модель галогенидов щелочных металлов 91 2-19 Общий случай молекулы AB 94 Дополнительные упражнения 100 Глава III. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 104 3-3. Теория валентных связей в применения к BeH2 109 3-4. Линейные трехатомные молекулы CA 110 3-5. Характернстика связей в молекуль с л-связями 110 3-6. Понные трехатомные молекулы CO2 115 3-6. Понные трехатомные молекулы Галогениды щелочноземельных металлов 116 Дополнительные упражнения 119 Глава IV Плоские треугольные молекулы 120 4-1 Молекула BF3 120 4-2 Молекулярные σ-орбитали 121 4-3. Молекулярные лорбитали 121 4-3. Молекула BF3 125 4-5 Эквивалентность σх- и σу-орбиталей 127 4-6 Основное состояние молекулы BF3 128 4-7. Молекула BF3 в методе валентных связей 130 4-8. Другие плоские треугольные молекулы BF3 128 4-7. Молекула BF3 в методе валентных связей 131 Дополнительные упражнения <td>2-17 Ионная связь</td> <td></td> <td>88</td>	2-17 Ионная связь		88
металлов 91 2-19 Общий случай молекулы 94 Дополнительные упражнения 100 Глава П. Линейные трехатомные молекулы 102 3-1. Молекула ВеН2 102 3-2. Энергетические уровни молекулы BeH2 104 3-3. Теория валентных связей в применении к ВеН2 109 3-4. Линейные трехатомные молекулы с л-связями 110 3-5. Характеристика связей в молекулы Галогениды щелоч- поземельных металлов 116 Дополнительные упражнения 119 Глава 120 4-1 Молекула ВF3 120 121 4-3. Молекула риые огорбитали 121 4-3. Молекуларные огорбитали 122 4-4. Энергетические уровни молекулы BF3 1	2-18 Простая понная модель галогенидов щело	чных	
2-19 Общий случай молекулы АВ 94 Дополнительные упражнения 100 Глава III. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 104 3-3. Теория валентных связей в применении к BeH2 109 3-4. Линейные трехатомные молекулы с п-связями 110 3-5. Характеристика связей в молекулы с п-связями 110 3-6 Ношые трехатомные молекулы Галогениды щелоч- позечельных металлов 116 Дополнительные упражнения 120 121 4-1 Молекула BF3 120 4-1 Молекула BF3 120 4-2 Молекула BF3 121 4-3. Молекула во сорбитали 121 4-4. Энергетические уровни молекулы BF3 128 4-5 <	металлов		91
Дополнительные упражнения 100 Глава III. Линейные трехатомные молекулы 102 3-1. Молекула BeH2 102 3-2. Энергетические уровни молекулы BeH2 104 3-3. Теория валентных связей в применении к BeH2 109 3-4. Линейные трехатомные молекулы с л-связями 110 3-5. Характеристика связей в молекуль с л-связями 110 3-6. Понные трехатомные молекулы СО2 115 3-6. Понные трехатомные молекулы Галогениды щелоч- ноземельных металлов 116 Дополнительные упражнения 120 4-1. Молекула BF3 120 4-2. Молекула BF3 120 4-3. Молекула BF3 120 4-4. Энергетические уровни молекулы BF3 121 4-3. Мо текулярные л-орбитали 121 4-4. Энергетические уровни молекулы BF3 125 4-5. Эквивалентность бл-е и бу-орбиталей 127 4-6. Основное состояние молекулы BF3 130 4-7. Молекула BF3 в методе валентных связей 131 Дополнительные упражнения 133 1.134 134 5-1. Молекула CH4 134 5-2. Основное состояние молекулы CH4 134	2-19 Общий случай молекулы AB	• •	. 94
Глава III. Линейные трехатомные молекулы 102 3-1. Молекула ВеН2 102 3-2. Энергетические уровни молекулы ВеН2 104 3-3. Теория валентных связей в применении к ВеН2 109 3-4. Линейные трехатомные молекулы с л-связями 110 3-5. Характеристика связей в молекулы с л-связями 110 3-6. Понные трехатомные молекулы СО2 115 3-6. Понные трехатомные молекулы Галогениды щелоч- ноземельных металлов 116 Дополнительные упражнения 120 4-1. Молекула ВF3 120 4-2. Молекула ВF3 120 4-3. Молекула ВF3 120 4-4. Энергетические уровни молекулы ВF, 121 4-3. Молекула ВF3 122 4-4. Энергетические уровни молекулы BF, 127 4-6. Основное состояние молекулы BF3 128 4-7. Молекула BF3 в методе валентных связей 130 4-8. Другие плоские треугольные молекулы 131 Дополнительные упражнения 133 1.аваа V. Теграэдрические молекулы 134 5-1. Молекула CH4 134 5-2. Основное состояние молекулы CH4 134	Дополнительные упражнения	•	. 100
3-1. Молекула ВеН2 102 3-2. Энергетические уровни молекулы ВеН2 104 3-3. Теория валентных связей в примененин к ВеН2 109 3-4. Линейные трехатомные молекулы с л-связями 110 3-5. Характеристика связей в молекулы СО2 115 3-6 Понные трехатомные молекулы СО2 115 3-6 Понные трехатомные молекулы Галогениды щелоч- поземельных металлов 116 Дополнительные упражнения 119 7.ава IV Плоские треугольные молекулы 120 4-1 Молекула ВF3 120 4-2 Молекулярные σ-орбитали 121 4-3. Молекулярные порбитали 121 4-4. Энергетические уровни молекулы ВF3 125 4-5 Эквивалентность σ _x - и σ _y -орбиталей 127 4-6 Основное состояние молекулы BF3 128 4-7. Молекула BF3 в методе валентных связей 130 4-8. Другие плоские треугольные молекулы 131 Дополнительные упражнения 133 1.ава V. Теграэдрические молекулы 134 5-1 Молекула СН4 134 5-2. Основное состояние молекулы СН4 134	Глава III. Линейные трехатомные молекулы		10 2
 3-2. Энергетические уровни молекулы ВеН2	3-1. Молекула ВеНа		. 102
 3-3. Теория валентных связей в применении к ВеН₂ . 109 3-4. Линейные трехатомные молекулы с π-связями . 110 3-5. Характеристика связей в молекуле CO₂	3-2. Энергетические уровни молекулы ВеН.		104
3-4. Линейные трехатомные молекулы с п-связями . 110 3-5. Характернстика связей в молекуле CO2 . 115 3-6. Пошые трехатомные молекулы Галогениды щелоч- поземельных металлов . 116 Дополнительные упражнения . 116 Дополнительные упражнения	3-3. Теория валентных связей в применении к ВеН.		109
 3-5. Характернстика связей в молекуле CO₂	3-4. Линейные трехатомные молекулы с π-связями		110
3-6 Нонные трехатомные молекуты Галогениды щелочноземельных металлов 116 Дополнительные упражнения 119 Глава IV Плоские треугольные молекулы 120 4-1 Молекула BF ₃ 120 4-2 Молекулярные обритали 121 4-3 Молекулярные порбитали 121 4-4 Энергетические уровни молекулы BF ₃ 125 4-5 Эквивалентность σ _N -и σ _N -орбиталей 127 4-6 Основное состояние молекулы BF ₃ 128 4-7 Молекула BF ₃ в методе валентных связей 130 4-8 Другие плоские треутольные молекулы 131 Дополнительные упражнения 133 1 лава V. Тетраэдрические молекулы 134 5-1 Молекула CH ₄ 134 5-2. Основное состояние молекулы CH ₄ 137	3-5. Характеристика связей в молекуле CO2		. 115
ноземельных металлов . 116 Дополнительные упражнения	3-6 Понные трехатомные молекуты Галогениды ш	целоч	•
Дополнительные упражнения	поземельных металлов		. 116
Глава IV Плоские треугольные молекулы 120 4-1 Молекула BF3 120 4-2 Молекулярные о-орбитали 121 4-3. Молекулярные п-орбитали 121 4-4. Энергетические уровни молекулы BF3 125 4-5 Эквивалентность ох- и оу-орбиталей 127 4-6 Основное состояние молекулы BF3 128 4-7. Молекула BF3 в методе валентных связей 130 4-8. Другие плоские треугольные молекулы 131 Дополнительные упражнения 133 1.лава V. Теграэдрические молекулы CH4 134 5-1 Молекула CH4 137	Дополнительные упражнения		. 119
4-1 Молекула BF3 .	Глава IV Плоские треугольные молекулы		120
4-2 Молекулярные σ-орбитали 121 4-3. Молекулярные π-орбитали 124 4-4. Энергетические уровни молекулы BF, 125 4-5 Эквивалентность σ _N - и σ _V -орбиталей 127 4-6 Основное состояние молекулы BF ₃ 128 4-7. Молекула BF ₃ в методе валентных связей 130 4-8. Другие плоские треугольные молекулы 131 Дополнительные упражнения 133 1.авва V. Теграэдрические молекулы CH ₄ 134 5-1 Молекула CH ₄ 137	4-1 MOJEKVJA BE		120
4-3. Молекулярные π-орбитали	4-2 Молекулярные оторбитали		. 121
4-4. Энергетические уровни молекулы BF,	4-3. Молекулярные люрбитали		124
4-5 Эквивалентность σ _x - и σ _y -орбиталей .<	4-4. Энергетические уровни молекулы BF,		. 125
4-6 Основное состояние молекулы BF3 . 128 4-7. Молекула BF3 в методе валентных связей . 130 4-8. Другие плоские треугольные молекулы . 131 Дополнительные упражнения . 133 1 лава V. Тетраэдрические молекулы . 134 5-1 Молекула CH4	4-5 Эквивалентность о _м -и о _м -орбиталей.		. 127
4-7. Молекула BF3 в методе валентных связей . 130 4-8. Другие плоские треутольные молекулы . 131 Дополнительные упражнения . 133 1 лава V. Тетраэдрические молекулы . 134 5-1 Молекула CH4	4-6 Основное состояние молекулы BF3		. 128
4-8. Другие плоские треугольные молекулы . 131 Дополнительные упражнения . 133 1.авва V. Тетраэдрические молекулы . 134 5-1. Молекула CH4	4-7. Молекула BF3 в методе валентных связей		. 130
Дополнительные упражнения	4-8. Другие плоские треугольные молекулы		. 131
1.авва V. Тетраэдрические молекулы 134 5-1 Молекула CH4	Дополнительные упражнения		. 133
5-1 Молекула СН4	Глава V. Тетраэдрические молекулы		134
5-2. Основное состояние молекулы СН ₄	5-1 Молекула СН		. 134
	5-2. Основное состояние молскулы CH4		. 137

5-3 Углы в тетраэдре 5-4. Молекула CH4 в методе валентных связей 5-5. Другие тетраэдрические молекулы Дополнительные упражнения	. 138 . 139 . 140 . 142
Глава VI. Молекулы, имеющие форму тригональной пирамиды	143
6-1 Молекула NH.	143
6-2. Перекрывание в σ_{x^2} – σ_{x^2} и σ_{x^2} МО	146
6-3 Отталкивание между электронами и углы межд	v 110
связями Н—N—Н в молекуле NH ₃	149
6-4. Углы между связями в других молекулах, построен	i-
ных в виде тригональной пирамиды	, 151
6-5. Основное состояние молекулы NH3	, 152
Дополнительные упражнения	. 154
Глава VII. Угловые трехатомные молекулы	. 155
7-1 Молекула НаО	155
7-2 Ochobeloe coctorative Modeky the H_0O	159
7-3. Угловые трехатомные молекулы с л-связями	1
Молекула NO ₂	. 162
7-4. σ-Орбитали	. 164
7-5. я-Орбитали	. 154
7-6. Основное состояние молекулы NO ₂	. 164
Дополнительные упражнения	. 167
Глава VIII Связи в молекулах органических соединений	168
9.1 Deserves	. 100
8-1. BBegenille	. 108
8-2. Molekyla $C_2 r_4$. 109
8.4 Ochopher costonul voitekyali $C_2\Pi_4$. 1/1
8-5 Modeky ta atuteua o «изори тими» органи	172
8-6 Характеристика тройной срязи С-С	174
8-7 Значение В. в молекуле С.Н.	176
8-8. Молекула формальтегита H ₂ CO	176
8-9. Ochobboe coctorhue Molekvith H_2CO	176
8-10. Перехолы <i>п</i> →т ^{разр} карбонильной группы	178
8-11. Молекула анетилена СоНо	179
8-12 Основное состояние молекулы С. Н.	179
8-13. Молекула СН ₃ СN	180
8-14 MOJEKYJA CoH6	180
8-15. Энергин молекулярных орбиталей С ₆ Н6	. 184
8-16 Основное состояние молекулы С.Н.	. 185

8-17. Допо Глава IX.	Энергия резонанса в молекуле С ₆ Н ₆	186 187 188
9-1.	Введение	188
9-2	Октаэдрический комплексный ион Ті(H2O)5 ,	188
9-3.	Энергетические уровни иона Ті(H_O)3+	191
9-4.	Основное состояние иона $Ti(H_2O)_6^{3+}$	193
9-5.	Электронный спектр иона Ti $(H_2O)^{3+}_{\circ}$	195
9-6.	Описание иона Ті $(H_2O)_6^{3+}$ методом ВС	196
9-7.	Описание иона Ti(N2O) ³⁺ с помощью геории кри-	
9-8	сталлического поля Соответствие между результатами, полученными с помощью теории молекулярных орбиталей теории	197
	валентных связей и геории кристаллического поля	200
9-9.	Типы л-связывания в комплексных соединениях	201
9-10.	Плоские квадратные комплексы	203
9-11.	Тетраэдрические комплексы	207
9-12.	Значение д	209
9-13.	Магнитные свойства комплексов. Лиганды слабого и	
	сильного поля .	214
9-14.	Электронные спектры октаэдрических комплексов .	218
Допо	элнительные упражнения	225
Закл	пючение	226
Реко	эмендуемая литература	227
Физ	ические константы	228
При	ложение. Энергии ионизации атомных орбиталей	229

Г. Грей

ЭЛЕКТРОНЫ И ХИМИЧЕСКАЯ СВЯЗЬ

Редактор В. П. Шеманина Художник С. Р. Ципорин Художественный редактор Е. И. Вескова Технический редактор А. В. Грушин Корректор А. Я. Шехтер

Сдано в производство 30/1Х 1966 г. Подписано к печати 16/1 1967 г. Бумага 84×108¹/зг. 3.69 бум. л., 12.39 усл. печ. л., 10.46 уч.-изд. л. Изд. № 3/3884 Цена 90 коп. Зак. 358

> ИЗДАТЕЛЬСТВО «МИР» Москва, 1-й Рижский пер., 2

Ленинградская типография № 2 имени Евгении Соколовой Главполиграфпрома Комитета по печати при Совете Министров СССР, Измайловский проспект, 29